Simultaneously enhancing moisture and mechanical stability of flexible perovskite solar cells via a polyimide interfacial layer

Zhuoxi Li , Xiangyu Kong , Yue Jiang , Xubing Lu , Xinseng Gao , Chaoliang Tan , Yiwang Chen , Guofu Zhou , Jun-Ming Liu , Jinwei Gao

Soft Science ›› 2021, Vol. 1 ›› Issue (1) : 4

PDF
Soft Science ›› 2021, Vol. 1 ›› Issue (1) :4 DOI: 10.20517/ss.2021.06
Research Article

Simultaneously enhancing moisture and mechanical stability of flexible perovskite solar cells via a polyimide interfacial layer

Author information +
History +
PDF

Abstract

Perovskite solar cells (PSCs) have aroused tremendous attention due to the high power conversion efficiency (PCE) and flexibility of the organic-inorganic hybrid perovskite films. However, the commercialization of perovskite solar cells is still impeded due to the instability issue induced by moisture and mechanical stress. Herein, we introduce soluble hydrophobic polyimide (PI) as an interfacial layer on top of the perovskite film to block the infiltration of moisture into the perovskite film. The MAPbI3-based solar cell with the insertion of PI layer exhibited an impressive stability, maintaining 87% of the initial PCE even after exposing to 50% relative humidity for 550 h and presenting a decent PCE of 21.22% due to its ability to extract holes and reduce trap-assisted recombination. Moreover, the high tolerance of PI to the mechanical stress gives a more stable flexibility to the PSCs under constant bending.

Keywords

Stability / hydrophobic / charge extraction / perovskite solar cells

Cite this article

Download citation ▾
Zhuoxi Li, Xiangyu Kong, Yue Jiang, Xubing Lu, Xinseng Gao, Chaoliang Tan, Yiwang Chen, Guofu Zhou, Jun-Ming Liu, Jinwei Gao. Simultaneously enhancing moisture and mechanical stability of flexible perovskite solar cells via a polyimide interfacial layer. Soft Science, 2021, 1(1): 4 DOI:10.20517/ss.2021.06

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang F.Additive engineering for efficient and stable perovskite solar cells.Adv Energy Mater2020;10:1902579

[2]

Chen J.Materials and methods for interface engineering toward stable and efficient perovskite solar cells.ACS Energy Lett2020;5:2742-86

[3]

Ran C,Gao W,Dou S.Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering.Chem Soc Rev2018;47:4581-610

[4]

Zhao J,Zhou Z.A safe flexible self-powered wristband system by integrating defective MnO2-x nanosheet-based Zinc-Ion batteries with perovskite solar cells.ACS Nano2021;> 15: 10597- 608

[5]

National Renewable Energy Laboratory USA, Best research-cell efficiencies. Available from: https://www.nrel.gov/pv/cell-efficiency.html. [Last accessed on 9 Aug 2021]

[6]

Jiang Q,Zhang X.Surface passivation of perovskite film for efficient solar cells.Nat Photonics2019;13:460-6

[7]

Yoo JJ,Chua MR.Efficient perovskite solar cells via improved carrier management.Nature2021;590:587-93

[8]

Wang R,Duan Y,Xue J.A review of perovskites solar cell stability.Adv Funct Mater2019;29:1808843

[9]

Niu T,Munir R.Stable high-performance perovskite solar cells via grain boundary passivation.Adv Mater2018;30:e1706576

[10]

Choi K,Kim HI.Thermally stable, planar hybrid perovskite solar cells with high efficiency.Energy Environ Sci2018;11:3238-47

[11]

Leguy AMA,Campoy-quiles M.Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells.Chem Mater2015;27:3397-407

[12]

Xie Y,Liu H.Co-Ni alloy@carbon aerogels for improving the efficiency and air stability of perovskite solar cells and its hysteresis mechanism.Carbon2019;154:322-9

[13]

Zheng H,Zhu L.The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition.Adv Energy Mater2018;8:1800051

[14]

Li F,Jo S.Vertical orientated Dion-Jacobson quasi-2D perovskite film with improved photovoltaic performance and stability.Small Methods2020;4:1900831

[15]

Wang Z,Chmiel FP,Herz LM.Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites.Nat Energy2017;2:17135

[16]

Zhang T,Li G.Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells.Sci Adv2017;3:e1700841 PMCID:PMC5621977

[17]

Kim M,Sorrentino R.Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film.Energy Environ Sci2018;11:2609-19

[18]

Zhang H,Zhu L.Polystyrene stabilized perovskite component, grain and microstructure for improved efficiency and stability of planar solar cells.Nano Energy2018;43:383-92

[19]

Yu Y,Chien W,Chen C.Photovoltaic performance enhancement of perovskite solar cells using polyimide and polyamic acid as additives.J Phys Chem C2019;123:23826-33

[20]

Jeong G,Seo J.Suppressed interdiffusion and degradation in flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer.Nano Lett2020;20:3718-27

[21]

Yoon J,Yoo Y.Foldable perovskite solar cells using carbon nanotube-embedded ultrathin polyimide conductor.Adv Sci (Weinh)2021;8:2004092 PMCID:PMC8025023

[22]

Chen C,Guo J.Solvent-assisted low-temperature crystallization of SnO2 electron-transfer layer for high-efficiency planar perovskite solar cells.Adv Funct Mater2019;29:1900557

[23]

Zhang S,Zhang W.Barrier designs in perovskite solar cells for long-term stability.Adv Energy Mater2020;10:2001610

[24]

Wang Q,Li T,Huang J.Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells.Adv Mater2016;28:6734-9

[25]

Wen X,Ye M,Lin C.Interface engineering via an insulating polymer for highly efficient and environmentally stable perovskite solar cells.Chem Commun (Camb)2016;52:11355-8

[26]

Yang Z,Li F,Kang C.Ultrahigh thermal-stability polyimides with low CTE and required flexibility by formation of hydrogen bonds between poly(amic acid)s.European Polymer Journal2021;148:110369

[27]

Zhang J,Wang Y,Ma J.In situ synthesis of ultrastable CsPbBr3 perovskite nanocrystals coated with polyimide in a CSTR system.ACS Appl Mater Interfaces2020;12:3080-5

[28]

Chen N,Zhuang J.An efficient trap passivator for perovskite solar cells: poly(propylene glycol) bis(2-aminopropyl ether).Nanomicro Lett2020;12:177 PMCID:PMC7770690

[29]

Huang Z,Liu C.Water-resistant and flexible perovskite solar cells via a glued interfacial layer.Adv Funct Mater2019;29:1902629

[30]

Cai Y,Chen M.Multifunctional enhancement for highly stable and efficient perovskite solar cells.Adv Funct Mater2021;31:2005776

[31]

Liu K,Qin M.Zwitterionic-surfactant-assisted room-temperature coating of efficient perovskite solar cells.Joule2020;4:2404-25

[32]

Chen C,Zhu L.Efficient and stable perovskite solar cells thanks to dual functions of oleyl amine-coated PbSO4(PbO)4 quantum dots: Defect passivation and moisture/oxygen blocking.Nano Energy2020;68:104313

[33]

Duijnstee EA,Le Corre VM,Snaith HJ.Toward understanding space-charge limited current measurements on metal halide perovskites.ACS Energy Lett2020;5:376-84

[34]

Liu Z,Wang M,Li L.Observing defect passivation of the grain boundary with 2-aminoterephthalic acid for efficient and stable perovskite solar cells.Angew Chem Int Ed Engl2020;59:4161-7

[35]

Zhao Y,Huang S.Molecular interaction regulates the performance and longevity of defect passivation for metal halide perovskite solar cells.J Am Chem Soc2020;142:20071-9

[36]

Yun S,Kwon H.Amino acid salt-driven planar hybrid perovskite solar cells with enhanced humidity stability.Nano Energy2019;59:481-91

[37]

Duan X,Tan L.Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells.Adv Mater2020;32:e2000617

AI Summary AI Mindmap
PDF

201

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/