Exercise-induced cardioprotection: From endogenous to exogenous mechanisms

John C. Quindry , Ronald E. Michalak

Sports Medicine and Health Science ›› 2025, Vol. 7 ›› Issue (5) : 366 -374.

PDF (926KB)
Sports Medicine and Health Science ›› 2025, Vol. 7 ›› Issue (5) : 366 -374. DOI: 10.1016/j.smhs.2025.03.009
Review article
research-article

Exercise-induced cardioprotection: From endogenous to exogenous mechanisms

Author information +
History +
PDF (926KB)

Abstract

Background: Acute myocardial infarction (AMI) remains the leading form of cardiovascular morbidity and mor- tality, while exercise is a preventative and therapeutic countermeasure. The collective benefits of exercise on the heart are called cardioprotection. Exercise-induced cardioprotection encompasses four broad areas: 1) cardio- vascular disease (CVD) risk factor improvement, 2) anatomical remodeling of the heart, 3) improved cardiac physiologic function, and 4) mechanisms of exercise preconditioning.

Discussion: With respect to the latter area of cardioprotection, research indicates that a few days of moderate intensity aerobic exercise preconditions the heart against cardiac dysrhythmias, ventricular pump dysfunction, and tissue death. The short duration protective timeframe, hours to days after exercise, indicates that the mechanisms are biochemical in nature. Protective mechanisms within exercised hearts include endogenous antioxidant enzymes, better regulation of cytosolic Ca2+, and more efficient bioenergetics. However, a formative body of work conducted over the last decade indicates that additional exogenous mechanisms may be receptor mediated, presumably providing cardioprotection via circulating factors. Preliminary findings indicate that tissue- to-tissue cross talk involves cardioprotective paracrine factors derived from muscle or autocrine factors origi- nating from the heart itself. This protection is termed exogenous (or remote) cardiac preconditioning, and appears to include δ-opioid receptors, IL-6 receptors, and perhaps other surface receptors on exercised cardiac tissue.

Conclusion: The current review outlines existing knowledge on exercise and factors of cardiac preconditioning, and highlights the avenues for next-step scientific advances to understanding treatments against AMI.

Keywords

Cardioprotection / Exercise / Ischemia-reperfusion injury / Preconditioning

Cite this article

Download citation ▾
John C. Quindry, Ronald E. Michalak. Exercise-induced cardioprotection: From endogenous to exogenous mechanisms. Sports Medicine and Health Science, 2025, 7(5): 366-374 DOI:10.1016/j.smhs.2025.03.009

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

John C. Quindry: Writing - review & editing, Writing - original draft, Visualization, Conceptualization. Ronald E. Michalak: Writing - review & editing, Writing - original draft.

Declaration of competing interest

John C. Quindry is an editorial board member for Sports Medicine and Health Science and was not in the editorial review or the decision to publish this article. Otherwise the authors have no other conflicts of in- terest to report.

Acknowledgements

The authors have no acknowledgements.

References

[1]

Martin SS, Aday AW, Almarzooq ZI, et al. 2024 Heart disease and stroke statistics: a report of US and global data from the American Heart Association. Circ. 2024; 149(8): e347-e913. https://doi.org/10.1161/cir.0000000000001209.

[2]

He J, Liu D, Zhao L, et al. Myocardial ischemia/reperfusion injury: mechanisms of injury and implications for management. Exp Ther Med. 2022; 23(6):430. https://doi.org/10.3892/etm.2022.11357.

[3]

Quindry JC, Franklin BA. Exercise preconditioning as a cardioprotective phenotype. Am J Cardiol. 2021; 148:8-15. https://doi.org/10.1016/j.amjcard.2021.02.030.

[4]

Williams PT. Physical fitness and activity as separate heart disease risk factors: a meta-analysis. Med Sci Sports Exerc. 2001; 33(5):754-761. https://doi.org/10.1097/00005768-200105000-00012.

[5]

Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009; 301(19):2024-2035. https://doi.org/10.1001/jama.2009.681.

[6]

Thijssen DHJ, Redington A, George KP, Hopman MTE, Jones H. Association of exercise preconditioning with immediate cardioprotection: a review. JAMA Cardiol. 2018; 3(2):169-176. https://doi.org/10.1001/jamacardio.2017.4495.

[7]

Franklin B, Quindry JC. Biochemistry of exercise training and mitigation of cardiovascular disease. In: Tidus P, MacPheroson R, Leblanc PJ, eds. Biochem of Exer. Routledge Publishers; 2021.

[8]

Powers SK, Quindry J, Hamilton K. Aging, exercise, and cardioprotection. Ann N Y Acad Sci. 2004; 1019:462-470. https://doi.org/10.1196/annals.1297.084.

[9]

Quindry JC. Exercise-induced cardioprotection and the therapeutic potential of RIPC. J Cardiovasc Pharmacol Therapeut. 2017; 22(5):397-403. https://doi.org/10.1177/1074248417715005.

[10]

Quindry JC, Franklin BA. Cardioprotective exercise and pharmacologic interventions as complementary antidotes to cardiovascular disease. Exerc Sport Sci Rev. 2018; 46(1):5-17. https://doi.org/10.1249/JES.0000000000000134.

[11]

Piercy KL, Troiano RP, Ballard RM, et al. The physical activity guidelines for Americans. JAMA. 2018; 320(19):2020-2028. https://doi.org/10.1001/jama.2018.14854.

[12]

American College of Sports Medicine. In: ACSM's Guidelines for Exercise Testing and Prescription. eleventh ed.ed. Wolters Kluwer; 2021.

[13]

Green DJ, Hopman MT, Padilla J, Laughlin MH, Thijssen DH. Vascular adaptation to exercise in humans: role of hemodynamic stimuli. Physiol Rev. 2017; 97(2):495-528. https://doi.org/10.1152/physrev.00014.2016.

[14]

Mora S, Cook N, Buring JE, Ridker PM, Lee IM. Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circ. 2007; 116(19): 2110-2118. https://doi.org/10.1161/CIRCULATIONAHA.107.729939.

[15]

Laughlin MH, McAllister RM. Exercise training-induced coronary vascular adaptation. J Appl Physiol (1985). 1992; 73(6):2209-2225. https://doi.org/10.1152/jappl.1992.73.6.2209.

[16]

Freimann S, Scheinowitz M, Yekutieli D, Feinberg MS, Eldar M, Kessler-Icekson G. Prior exercise training improves the outcome of acute myocardial infarction in the rat heart structure, function, and gene expression. J Am Coll Cardiol. 2005; 45(6): 931-938. https://doi.org/10.1016/j.jacc.2004.11.052.

[17]

Bowles DK, Farrar RP, Starnes JW. Exercise training improves cardiac function after ischemia in the isolated, working rat heart. Am J Physiol. 1992; 263(3 Pt2): H804-H809. https://doi.org/10.1152/ajpheart.1992.263.3.H804.

[18]

Starnes JW, Bowles DK. Role of exercise in the cause and prevention of cardiac dysfunction. Exerc Sport Sci Rev. 1995;23:349-373.

[19]

Demirel HA, Powers SK, Caillaud C, et al. Exercise training reduces myocardial lipid peroxidation following short-term ischemia-reperfusion. Med Sci Sports Exerc. 1998; 30(8):1211-1216. https://doi.org/10.1097/00005768-199808000-00005.

[20]

Powers SK, Demirel HA, Vincent HK, et al. Exercise training improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. Am J Physiol. 1998; 275(5 Pt2): R1468-R1477. https://doi.org/10.1152/ajpregu.1998.275.5.R1468.

[21]

Demirel HA, Powers SK, Zergeroglu MA, et al. Short-term exercise improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. J Appl Physiol (1985). 2001; 91(5):2205-2212. https://doi.org/10.1152/jappl.2001.91.5.2205.

[22]

Taylor RP, Harris MB, Starnes JW. Acute exercise can improve cardioprotection without increasing heat shock protein content. Am J Physiol. 1999; 276(3 Pt2): H1098-H1102. https://doi.org/10.1152/ajpheart.1999.276.3.H1098.

[23]

Yamashita N, Hoshida S, Otsu K, Asahi M, Kuzuya T, Hori M. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J Exp Med. 1999; 189(11):1699-1706. https://doi.org/10.1084/jem.189.11.1699.

[24]

Hamilton KL, Quindry JC, French JP, et al. MnSOD antisense treatment and exercise- induced protection against arrhythmias. Free Radic Biol Med. 2004; 37(9):1360-1368. https://doi.org/10.1016/j.freeradbiomed.2004.07.025.

[25]

McGinnis GR, Ballmann C, Peters B, et al. Interleukin-6 mediates exercise preconditioning against myocardial ischemia reperfusion injury. Am J Physiol Heart Circ Physiol. 2015; 308(11):H1423-H1433. https://doi.org/10.1152/ajpheart.00850.2014.

[26]

Quindry JC, Hamilton KL, French JP, et al. Exercise-induced HSP-72 elevation and cardioprotection against infarct and apoptosis. J Appl Physiol (1985). 2007; 103(3): 1056-1062. https://doi.org/10.1152/japplphysiol.00263.2007.

[27]

Quindry JC, Schreiber L, Hosick P, Wrieden J, Irwin JM, Hoyt E. Mitochondrial KATP channel inhibition blunts arrhythmia protection in ischemic exercised hearts. Am J Physiol Heart Circ Physiol. 2010; 299(1):H175-H183. https://doi.org/10.1152/ajpheart.01211.2009.

[28]

French JP, Hamilton KL, Quindry JC, Lee Y, Upchurch PA, Powers SK. Exercise- induced protection against myocardial apoptosis and necrosis: MnSOD, calcium- handling proteins, and calpain. FASEB J. 2008; 22(8):2862-2871, 1096/fj.07-102541.

[29]

French JP, Quindry JC, Falk DJ, et al. Ischemia-reperfusion-induced calpain activation and SERCA2a degradation are attenuated by exercise training and calpain inhibition. Am J Physiol Heart Circ Physiol. 2006; 290(1):H128-H136, 1152/ajpheart.00739.2005.

[30]

Quindry J, French J, Hamilton K, Lee Y, Mehta JL, Powers S. Exercise training provides cardioprotection against ischemia-reperfusion induced apoptosis in young and old animals. Exp Gerontol. 2005; 40(5):416-425. https://doi.org/10.1016/j.exger.2005.03.010.

[31]

Quindry JC, Franklin BA, Chapman M, Humphrey R, Mathis S. Benefits and risks of high-intensity interval training in patients with coronary artery disease. Am J Cardiol. 2019; 123(8):1370-1377. https://doi.org/10.1016/j.amjcard.2019.01.008.

[32]

Lennon SL, Quindry JC, French JP, Kim S, Mehta JL, Powers SK. Exercise and myocardial tolerance to ischaemia-reperfusion. Acta Physiol Scand. 2004; 182(2): 161-169. https://doi.org/10.1111/j.1365-201X.2004.01346.x.

[33]

Powers SK, Quindry JC, Kavazis AN. Exercise-induced cardioprotection against myocardial ischemia-reperfusion injury. Free Radic Biol Med. 2008; 44(2):193-201. https://doi.org/10.1016/j.freeradbiomed.2007.02.006.

[34]

Criswell D, Powers S, Dodd S, et al. High intensity training-induced changes in skeletal muscle antioxidant enzyme activity. Med Sci Sports Exerc. 1993; 25(10): 1135-1140.

[35]

Powers SK, Grinton S, Lawler J, Criswell D, Dodd S. High intensity exercise training- induced metabolic alterations in respiratory muscles. Respir Physiol. 1992; 89(2): 169-177. https://doi.org/10.1016/0034-5687(92)90048-2.

[36]

Lightfoot JT, Leamy L, Pomp D, et al. Strain screen and haplotype association mapping of wheel running in inbred mouse strains. J Appl Physiol (1985). 2010; 109(3):623-634. https://doi.org/10.1152/japplphysiol.00525.2010.

[37]

Collins HL, Loka AM, Dicarlo SE. Daily exercise-induced cardioprotection is associated with changes in calcium regulatory proteins in hypertensive rats. Am J Physiol Heart Circ Physiol. 2005; 288(2):H532-H540. https://doi.org/10.1152/ajpheart.00873.2004.

[38]

Starnes JW, Taylor RP, Park Y. Exercise improves postischemic function in aging hearts. Am J Physiol Heart Circ Physiol. 2003; 285(1):H347-H351. https://doi.org/10.1152/ajpheart.00952.2002.

[39]

Brown DA, Chicco AJ, Jew KN, et al. Cardioprotection afforded by chronic exercise is mediated by the sarcolemmal, and not the mitochondrial, isoform of the KATP channel in the rat. J Physiol. 2005; 569(Pt 3):913-924. https://doi.org/10.1113/jphysiol.2005.095729.

[40]

Chicco AJ, Johnson MS, Armstrong CJ, et al. Sex-specific and exercise-acquired cardioprotection is abolished by sarcolemmal KATP channel blockade in the rat heart. Am J Physiol Heart Circ Physiol. 2007; 292(5):H2432-H2437. https://doi.org/10.1152/ajpheart.01301.2006.

[41]

Hamilton KL, Staib JL, Phillips T, Hess A, Lennon SL, Powers SK. Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med. 2003; 34(7):800-809. https://doi.org/10.1016/s0891-5849(02) 01431-4.

[42]

Starnes JW, Taylor RP, Ciccolo JT. Habitual low-intensity exercise does not protect against myocardial dysfunction after ischemia in rats. Eur J Cardiovasc Prev Rehabil. 2005; 12(2):169-174. https://doi.org/10.1097/01.hjr.0000159319.62466.95.

[43]

Lennon SL, Quindry J, Hamilton KL, et al. Loss of exercise-induced cardioprotection after cessation of exercise. J Appl Physiol (1985). 2004; 96(4):1299-1305. https://doi.org/10.1152/japplphysiol.00920.2003.

[44]

Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circ. 1986; 74(5):1124-1136. https://doi.org/10.1161/01.cir.74.5.1124.

[45]

Bolli R. The late phase of preconditioning. Circ Res. 2000; 87(11):972-983. https://doi.org/10.1161/01.res.87.11.972.

[46]

Preconditioning Bolli R. A paradigm shift in the biology of myocardial ischemia. Am J Physiol Heart Circ Physiol. 2007; 292(1):H19-H27. https://doi.org/10.1152/ajpheart.00712.2006.

[47]

Quindry J, Hamilton K. Exercise Induced Cardioprotection: an overview and critical comparison with ischemic preconditioning. Curr Cardiol Rev. 2007; 3(4):193-201. https://doi.org/10.1007/s11332-015-0225-1.

[48]

Lennon SL, Quindry JC, Hamilton KL, et al. Elevated MnSOD is not required for exercise-induced cardioprotection against myocardial stunning. Am J Physiol Heart Circ Physiol. 2004; 287(2):H975-H980. https://doi.org/10.1152/ajpheart.01208.2003.

[49]

Miller LE, Hosick PA, Wrieden J, Hoyt E, Quindry JC. Evaluation of arrhythmia scoring systems and exercise-induced cardioprotection. Med Sci Sports Exerc. 2012; 44(3):435-441. https://doi.org/10.1249/MSS.0b013e3182323f8b.

[50]

Curtis MJ, Macleod BA, Walker MJ. Models for the study of arrhythmias in myocardial ischaemia and infarction: the use of the rat. J Mol Cell Cardiol. 1987; 19(4):399-419. https://doi.org/10.1016/s0022-2828(87)80585-0.

[51]

Curtis MJ, Walker MJ. Quantification of arrhythmias using scoring systems: an examination of seven scores in an in vivo model of regional myocardial ischaemia. Cardiovasc Res. 1988; 22(9):656-665. https://doi.org/10.1093/cvr/22.9.656.

[52]

Kavazis AN, Alvarez S, Talbert E, Lee Y, Powers SK. Exercise training induces a cardioprotective phenotype and alterations in cardiac subsarcolemmal and intermyofibrillar mitochondrial proteins. Am J Physiol Heart Circ Physiol. 2009; 297(1):H144-H152. https://doi.org/10.1152/ajpheart.01278.2008.

[53]

Frasier CR, Moukdar F, Patel HD, et al. Redox-dependent increases in glutathione reductase and exercise preconditioning: role of NADPH oxidase and mitochondria. Cardiovasc Res. 2013; 98(1):47-55. https://doi.org/10.1093/cvr/cvt009.

[54]

Bowles DK, Starnes JW. Exercise training improves metabolic response after ischemia in isolated working rat heart. J Appl Physiol (1985). 1994; 76(4):1608-1614. https://doi.org/10.1152/jappl.1994.76.4.1608.

[55]

Hanley PJ, Daut J. K(ATP) channels and preconditioning: a re-examination of the role of mitochondrial K(ATP) channels and an overview of alternative mechanisms. J Mol Cell Cardiol. 2005; 39(1):17-50. https://doi.org/10.1016/j.yjmcc.2005.04.002.

[56]

Quindry JC, Miller L, McGinnis G, et al. Ischemia reperfusion injury, KATP channels, and exercise-induced cardioprotection against apoptosis. J Appl Physiol (1985). 2012; 113(3):498-506. https://doi.org/10.1152/japplphysiol.00957.2011.

[57]

Brown AS, Davis JM, Murphy EA, Carmichael MD, Ghaffar A, Mayer EP. Gender differences in viral infection after repeated exercise stress. Med Sci Sports Exerc. 2004; 36(8):1290-1295. https://doi.org/10.1249/01.mss.0000135798.72735.b3.

[58]

Bolli R, Li QH, Tang XL, et al. The late phase of preconditioning and its natural clinical application-gene therapy. Heart Fail Rev. 2007; 12(3-4):189-199. https://doi.org/10.1007/s10741-007-9031-4.

[59]

Bolli R, Shinmura K, Tang X, et al. Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning. Cardiovasc Res. 2002; 55(3): 506. https://doi.org/10.1016/s0008-6363(02)00414-5.

[60]

Dickson EW, Hogrefe CP, Ludwig PS, Ackermann LW, Stoll LL, Denning GM. Exercise enhances myocardial ischemic tolerance via an opioid receptor-dependent mechanism. Am J Physiol Heart Circ Physiol. 2008; 294(1):H402-H408. https://doi.org/10.1152/ajpheart.00280.2007.

[61]

Denning GM, Ackermann LW, Barna TJ, et al. Proenkephalin expression and enkephalin release are widely observed in non-neuronal tissues. Peptides. 2008; 29(1): 83-92. https://doi.org/10.1016/j.peptides.2007.11.004.

[62]

Goldfarb AH, Kraemer RR, Baiamonte BA. Endogenous opioids and exercise-related hypoalgesia: modern models, measurement, and mechanisms of action. Adv Neurobiol. 2024; 35:137-155. https://doi.org/10.1007/978-3-031-45493-6_8.

[63]

Miller L, McGinnis G, Peters B, et al. Involvement of the delta opioid receptor in exercise-induced cardioprotection. Exp Physiol. 2015; 100(4):410-421. https://doi.org/10.1113/expphysiol.2014.083436.

[64]

Pedersen BK, Edward F. Adolph distinguished lecture: muscle as an endocrine organ: IL-6 and other myokines. J Appl Physiol. 2009; 107(4):1006-1014. https://doi.org/10.1152/japplphysiol.00734.2009.

[65]

Singh A, Randhawa PK, Bali A, Singh N, Jaggi AS. Exploring the role of TRPV and CGRP in adenosine preconditioning and remote hind limb preconditioning-induced cardioprotection in rats. Cardiovasc Drugs Ther. 2017; 31(2):133-143. https://doi.org/10.1007/s10557-017-6716-3.

[66]

Dawn B, Xuan YT, Guo Y, et al. IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovasc Res. 2004; 64(1):61-71. https://doi.org/10.1016/j.cardiores.2004.05.011.

[67]

Ruegsegger GN, Booth FW. Health benefits of exercise. Cold Spring Harb Perspect Med. 2018; 8(7):a029694. https://doi.org/10.1101/cshperspect.a029694.

[68]

Gross GJ, Peart JN. KATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol. 2003; 285(3):H921-H930. https://doi.org/10.1152/ajpheart.00421.2003.

[69]

Bolli R, Becker L, Gross G, et al. Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res. 2004; 95(2):125-134. https://doi.org/10.1161/01.RES.0000137171.97172.d7.

[70]

Schulman D, Latchman DS, Yellon DM. Effect of aging on the ability of preconditioning to protect rat hearts from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2001; 281(4):H1630-H1636. https://doi.org/10.1152/ajpheart.2001.281.4.H1630.

[71]

Peart JN, Gross ER, Headrick JP, Gross GJ. Impaired p 38 MAPK/HSP27 signaling underlies aging-related failure in opioid-mediated cardioprotection. J Mol Cell Cardiol. 2007; 42(5):972-980. https://doi.org/10.1016/j.yjmcc.2007.02.011.

[72]

Korzick DH, Hunter JC, McDowell MK, Delp MD, Tickerhoof MM, Carson LD. Chronic exercise improves myocardial inotropic reserve capacity through alpha1-adrenergic and protein kinase C-dependent effects in Senescent rats. J Gerontol A Biol Sci Med Sci. 2004; 59(11):1089-1098. https://doi/10.1093/gerona/59.11.1089.

[73]

Wilson EM, Diwan A, Spinale FG, Mann DL. Duality of innate stress responses in cardiac injury, repair, and remodeling. J Mol Cell Cardiol. 2004; 37(4):801-811. https://doi.org/10.1016/j.yjmcc.2004.05.028.

AI Summary AI Mindmap
PDF (926KB)

300

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/