Perspectives on enhancing human performance in the heat: Is the solution to simply “just add water”?

M.L. Millard-Stafford a , M.B. Brown b , M.T. Wittbrodt c

Sports Medicine and Health Science ›› 2025, Vol. 7 ›› Issue (5) : 317 -328.

PDF (838KB)
Sports Medicine and Health Science ›› 2025, Vol. 7 ›› Issue (5) : 317 -328. DOI: 10.1016/j.smhs.2024.12.001
Review article
research-article

Perspectives on enhancing human performance in the heat: Is the solution to simply “just add water”?

Author information +
History +
PDF (838KB)

Abstract

Human exercise performance is influenced by factors related to inherent individual characteristics along with other modifiable factors. During exercise in the heat, sweating provides the major avenue for cooling. When body water losses exceed 2% body mass, changes in physiological responses are observed in a dose-response manner. Human sweat varies in electrolyte content due to differences in ion channel re-absorption in the sweat duct. Moderate hypohydration (> 2% body mass) is associated with physical and mental performance impairments, although this depends on the environment (e.g., warm to hot) and type of exercise (e.g., endurance) or cognitive task (e.g., sustained attention, executive function, motor coordination) involved. This begs the question: Is simply adding water the optimal “solution” to improving human performance during events eliciting dehydration? This review focuses on literature applicable to athletes and military personnel during exertion in the heat. Historically, optimally formulating a sports drink to ingest during exercise has focused on appropriate levels of carbohydrate, with more recent interest spanning from higher electrolyte concentrations to amino acid formulations. Evidence to support recommendations regarding beverage bioavailability during exercise comes from studies comparing the appearance of heavy water (tagged within a beverage) in blood. Fluid delivery appears enhanced with moderately concentrated carbohydrate while electrolyte composition plays a lesser role. Despite the robust historical scientific literature related to fluid replacement, the quest for the optimal sports drink during exercise in the heat continues to generate interest considering global warming trends and the increasing numbers of new hydration-related products for exercising individuals.

Keywords

Deuterium oxide / Dehydration / Sports drinks / Exercise / Carbohydrate

Cite this article

Download citation ▾
M.L. Millard-Stafford a, M.B. Brown b, M.T. Wittbrodt c. Perspectives on enhancing human performance in the heat: Is the solution to simply “just add water”?. Sports Medicine and Health Science, 2025, 7(5): 317-328 DOI:10.1016/j.smhs.2024.12.001

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

M.L. Millard-Stafford: Writing - review & editing, Writing - original draft, Visualization, Supervision, Conceptualization. M.B. Brown: Writing - review & editing, Writing - original draft. M.T. Wittbrodt: Writing - review & editing, Writing - original draft, Visualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The author was not involved in the editorial review or the decision to publish this article.

The authors declare the following financial interests/personal re- lationships which may be considered as potential competing interests:

MM-S has received research funding from industry sponsors Unilever and The Coca-Cola Company. The author has also intermittently acted as a consultant and received honoraria from The Coca-Cola Company and Abbott Laboratories. No funding was received in the preparation of this paper or influence of industry.

References

[1]

J'equier E, Constant F. Water as an essential nutrient: the physiological basis of hydration. Eur J Clin Nutr. 2010; 64(2):115-123. https://doi.org/10.1038/ ejcn.2009.11.

[2]

Kleiner SM. Water: an essential but overlooked nutrient. J Am Diet Assoc. 1999; 99(2):200-206. https://doi.org/10.1016/s0002-8223(99)00048-6.

[3]

H€aussinger D, Roth E, Lang F, Gerok W. Cellular hydration state: an important determinant of protein catabolism in health and disease. Lancet. 1993; 341(8856): 1330-1332. https://doi.org/10.1016/0140-6736(93)90828-5.

[4]

Schoeller DA. Changes in total body water with age. Am J Clin Nutr. 1989; 50(5 Suppl):1176-1235. https://doi.org/10.1093/ajcn/50.5.1176.

[5]

Prior BM, Cureton KJ, Modlesky CM, et al. In vivo validation of whole body composition estimates from dual-energy X-ray absorptiometry. Appl Physiol(1985). 1997; 83(2):623-630. https://doi.org/10.1152/jappl.1997.83.2.623.

[6]

Yamada Y, Zhang X, Henderson MET, et al. Variation in human water turnover associated with environmental and lifestyle factors. Science. 2022; 378(6622): 909-915. https://doi.org/10.1126/science.abm8668.

[7]

Wells JC, Fewtrell MS, Davies PS, Williams JE, Coward WA, Cole TJ. Prediction of total body water in infants and children. Arch Dis Child. 2005; 90(9):965-971. https://doi.org/10.1136/adc.2004.067538.

[8]

Chumlea WC, Schubert CM, Sun SS, Demerath E, Towne B, Siervogel RM. A review of body water status and the effects of age and body fatness in children and adults. J Nutr Health Aging. 2007; 11(2):111-118. https://pubmed.ncbi.nlm.nih.gov/17435953/.

[9]

Millard-Stafford ML, Collins MA, Modlesky CM, Snow TK, Rosskopf LB. Effect of race and resistance training status on the density of fat-free mass and percent fat estimates. J Appl Physiol(1985). 2001; 91(3):1259-1268. https://doi.org/10.1152/jappl.2001.91.3.1259.

[10]

Forbes RM, Cooper AR, Mitchell HH. The composition of the adult human body as determined by chemical analysis. J Biol Chem. 1953; 203(1):359-366. https://pubm ed.ncbi.nlm.nih.gov/13069519/.

[11]

Bhave G, Neilson EG. Body fluid dynamics: back to the future. J Am Soc Nephrol. 2011; 22(12):2166-2181. https://doi.org/10.1681/asn.2011080865.

[12]

Pain RW. Body fluid compartments. Anaesth Intensive Care. 1977; 5(4):284-294. https://doi.org/10.1177/0310057x7700500403.

[13]

Aukland K. Distribution of body fluids: local mechanisms guarding interstitial fluid volume. J Physiol (Paris). 1984; 79(6):395-400.

[14]

Lacey J, Corbett J, Forni L, et al. A multidisciplinary consensus on dehydration: definitions, diagnostic methods and clinical implications. Ann Med. 2019; 51(3-4): 232-251. https://doi.org/10.1080/07853890.2019.1628352.

[15]

Sawka M, Wenger C. Physiological responses to acute exercise-heat stress. In: PandolfKBSM, GonzalezRR, Human Performance Physiology and Environmental Medicine at Terrestrial Extremes. Carmel. CooperPublishing Group;eds. 1988:97-151.

[16]

Baker LB. Sweating rate and sweat sodium concentration in athletes: a review of methodology and intra/interindividual variability. Sports Med. 2017; 47(Suppl 1): 111-128. https://doi.org/10.1007/s40279-017-0691-5.

[17]

Brown MB, Haack KK, Pollack BP, Millard-Stafford M, McCarty NA. Low abundance of sweat duct Cl- channel CFTR in both healthy and cystic fibrosis athletes with exceptionally salty sweat during exercise. Am J Physiol Regul Integr Comp Physiol. 2011; 300(3):R605-R615. https://doi.org/10.1152/ajpregu.00660.2010.

[18]

Sato K. The physiology, pharmacology, and biochemistry of the eccrine sweat gland. Rev Physiol Biochem Pharmacol. 1977; 79:51-131. https://doi.org/10.1007/ BFb0037089.

[19]

Sato K, Sato F. Naþ Kþ Hþ Cl-, and Ca2þ concentrations in cystic fibrosis eccrine sweat in vivo and in vitro. J Lab Clin Med. 1990; 115(4):504-511.

[20]

Cohn JA, Melhus O, Page LJ, Dittrich KL, Vigna SR. CFTR: development of high- affinity antibodies and localization in sweat gland. Biochem Biophys Res Commun. 1991; 181(1):36-43. https://doi.org/10.1016/s0006-291x(05)81378-6.

[21]

Crawford I, Maloney PC, Zeitlin PL, et al. Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc Natl Acad Sci U S A. 1991; 88(20): 9262-9266. https://doi.org/10.1073/pnas.88.20.9262.

[22]

Reddy MM, Quinton PM. cAMP activation of CF-affected Cl- conductance in both cell membranes of an absorptive epithelium. J Membr Biol. 1992; 130(1):49-62. https://doi.org/10.1007/bf00233738.

[23]

Reddy MM, Quinton PM. Localization of Cl- conductance in normal and Cl- impermeability in cystic fibrosis sweat duct epithelium. Am J Physiol. 1989; 257(4 Pt1):C727-C735. https://doi.org/10.1152/ajpcell.1989.257.4.C727.

[24]

Reddy MM, Quinton PM. Functional interaction of CFTR and ENaC in sweat glands. Pflügers Archiv. 2003; 445(4):499-503. https://doi.org/10.1007/s00424-002-0959-x.

[25]

Quinton PM. Effects of some ion transport inhibitors on secretion and reabsorption in intact and perfused single human sweat glands. Pflügers Archiv. 1981; 391(4): 309-313. https://doi.org/10.1007/bf00581513.

[26]

Brown MB, McCarty NA,Millard-Stafford M. High-sweat Naþ in cystic fibrosis and healthy individuals does not diminish thirst during exercise in the heat.Am J Physiol Regul Integr Comp Physiol. 2011; 301(4):R1177-R1185. https://doi.org/10.1152/ajpregu.00551.2010.

[27]

Thornton SN. Thirst and hydration: physiology and consequences of dysfunction. Physiol Behav. 2010; 100(1):15-21. https://doi.org/10.1016/j.physbeh.2010.02.026.

[28]

Thrasher TN. Baroreceptor regulation of vasopressin and renin secretion: low- pressure versus high-pressure receptors. Front Neuroendocrinol. 1994; 15(2): 157-196. https://doi.org/10.1006/frne.1994.1007.

[29]

Farrell GL, Rauschkolb EW, Rosnagle RS. Increased aldosterone secretion in response to blood loss. Circ Res. 1956; 4(5):606-611. https://doi.org/10.1161/01.res.4.5.606.

[30]

Bichet DG. Regulation of thirst and vasopressin release. Annu Rev Physiol. 2019; 81: 359-373. https://doi.org/10.1146/annurev-physiol-020518-114556.

[31]

Hughes F, Mythen M, Montgomery H. The sensitivity of the human thirst response to changes in plasma osmolality: a systematic review. Perioperat Med. 2018;7:1. https://doi.org/10.1186/s13741-017-0081-4.

[32]

Danziger J, Zeidel ML. Osmotic homeostasis. Clin J Am Soc Nephrol. 2015; 10(5): 852-862. https://doi.org/10.2215/cjn.10741013.

[33]

Geelen G, Keil LC, Kravik SE, et al. Inhibition of plasma vasopressin after drinking in dehydrated humans. Am J Physiol. 1984; 247(6 Pt2):R968-R971. https://doi.org/10.1152/ajpregu.1984.247.6.R968.

[34]

Millard-Stafford M, Wendland DM, O'Dea NK, Norman TL. Thirst and hydration status in everyday life. Nutr Rev. 2012; 70(Suppl 2):S147-S151. https://doi.org/10.1111/j.1753-4887.2012.00527.x.

[35]

Kenefick RW. Drinking strategies: planned drinking versus drinking to thirst. Sports Med. 2018; 48(Suppl 1):31-37. https://doi.org/10.1007/s40279-017-0844-6.

[36]

Maughan RJ, Owen JH, Shirreffs SM, Leiper JB. Post-exercise rehydration in man: effects of electrolyte addition to ingested fluids. Eur J Appl Physiol Occup Physiol. 1994; 69(3):209-215. https://doi.org/10.1007/bf01094790.

[37]

Shirreffs SM, Maughan RJ. Volume repletion after exercise-induced volume depletion in humans: replacement of water and sodium losses. Am J Physiol. 1998; 274(5):F868-F875. https://doi.org/10.1152/ajprenal.1998.274.5.F868.

[38]

Shirreffs SM, Taylor AJ, Leiper JB, Maughan RJ. Post-exercise rehydration in man: effects of volume consumed and drink sodium content. Med Sci Sports Exerc. 1996; 28(10):1260-1271. https://doi.org/10.1097/00005768-199610000-00009.

[39]

Baker LB, De Chavez PJD, Nuccio RP, et al. Explaining variation in sweat sodium concentration: effect of individual characteristics and exercise, environmental, and dietary factors. J Appl Physiol. (1985). 2022; 133(6):1250-1259. https://doi.org/10.1152/japplphysiol.00391.2022.

[40]

Baker LB, De Chavez PJD, Ungaro CT, et al. Exercise intensity effects on total sweat electrolyte losses and regional vs. whole-body sweat [Na(þ)], [Cl(-)], and [K(þ)]. Eur J Appl Physiol. 2019; 119(2):361-375. https://doi.org/10.1007/s00421-018-4048-z.

[41]

Buono MJ, Claros R, Deboer T,Wong J. Naþ secretion rate increases proportionally more than the Naþ reabsorption rate with increases in sweat rate. J Appl Physiol (1985). 2008; 105(4):1044-1048. https://doi.org/10.1152/japplphysiol.90503.2008.

[42]

Buono MJ, Kolding M, Leslie E, et al. Heat acclimation causes a linear decrease in sweat sodium ion concentration. J Therm Biol. 2018; 71:237-240. https://doi.org/10.1016/j.jtherbio.2017.12.001.

[43]

Kirby CR, Convertino VA. Plasma aldosterone and sweat sodium concentrations after exercise and heat acclimation. J Appl Physiol. (1985). 1986; 61(3):967-970. https://doi.org/10.1152/jappl.1986.61.3.96.

[44]

Buono MJ, Sjoholm NT. Effect of physical training on peripheral sweat production. J Appl Physiol (1985). 1988; 65(2):811-814. https://doi.org/10.1152/jappl.1988.65.2.811.

[45]

Greenleaf JE. Problem: thirst, drinking behavior, and involuntary dehydration. Med Sci Sports Exerc. 1992; 24(6):645-656.

[46]

Bartoli WP, Davis JM, Pate RR, Ward DS, Watson PD. Weekly variability in total body water using 2H2O dilution in college-age males. Med Sci Sports Exerc. 1993; 25(12):1422-1428.

[47]

Grandjean AC, Reimers KJ, Haven MC, Curtis GL. The effect on hydration of two diets, one with and one without plain water. J Am Coll Nutr. 2003; 22(2):165-173. https://doi.org/10.1080/07315724.2003.10719290.

[48]

Sawka MN, Cheuvront SN,Carter 3rd R. Human water needs. Nutr Rev. 2005; 63(6 Pt2):S30-S39. https://doi.org/10.1111/j.1753-4887.2005.tb00152.x.

[49]

Pitts GC, Johnson RE, Consolazio FC. Work in the heat as affected by intake of water, salt and glucose. American Journal of Physiology-Legacy Content. 1944; 142(2): 253-259. https://doi.org/10.1152/ajplegacy.1944.142.2.253.

[50]

Adolph EF. In: Adolph EF, ed.Physiology of Man in the Desert. Interscience Publishers; 1947.

[51]

Cade JR, Free HJ, De Quesada AM, Shires DL, Roby L. Changes in body fluid composition and volume during vigorous exercise by athletes. J Sports Med Phys Fit. 1971; 11(3):172-178.

[52]

Montain SJ, Coyle EF. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J Appl Physiol(1985). 1992; 73(4):1340-1350. https://doi.org/10.1152/jappl.1992.73.4.1340.

[53]

Sawka MN, Gonzalez RR, Young AJ, Dennis RC, Valeri CR, Pandolf KB. Control of thermoregulatory sweating during exercise in the heat. Am J Physiol. 1989; 257(2 Pt2):R311-R316. https://doi.org/10.1152/ajpregu.1989.257.2.R311.

[54]

Tankersley CG, Zappe DH, Meister TG, Kenney WL. Hypohydration affects forearm vascular conductance independent of heart rate during exercise. J Appl Physiol(1985). 1992; 73(4):1232-1237. https://doi.org/10.1152/jappl.1992.73.4.1232.

[55]

Kenney WL, Tankersley CG, Newswanger DL, Hyde DE, Puhl SM, Turner NL. Age and hypohydration independently influence the peripheral vascular response to heat stress. J Appl Physiol. 1990; 68(5):1902-1908. https://doi.org/10.1152/jappl.1990.68.5.1902.

[56]

Buono MJ, Wall AJ. Effect of hypohydration on core temperature during exercise in temperate and hot environments. Pflügers Archiv. 2000; 440(3):476-480. https://doi.org/10.1007/s004240000298.

[57]

Adams JD, Sekiguchi Y, Suh HG, et al. Dehydration impairs cycling performance, independently of thirst: a blinded study. Med Sci Sports Exerc. 2018; 50(8): 1697-1703. https://doi.org/10.1249/mss.0000000000001597.

[58]

James LJ, Funnell MP, James RM, Mears SA. Does hypohydration really impair endurance performance? Methodological considerations for interpreting hydration research. Sports Med. 2019; 49(Suppl 2):103-114. https://doi.org/10.1007/s40279-019-01188-5.

[59]

James LJ, Moss J, Henry J, Papadopoulou C, Mears SA. Hypohydration impairs endurance performance: a blinded study. Phys Rep. 2017; 5(12):e13315. https://doi.org/10.14814/phy2.13315.

[60]

Funnell MP, Moss J, Brown DR, Mears SA, James LJ. Perceived dehydration impairs endurance cycling performance in the heat in active males. Physiol Behav. 2024; 276:114462. https://doi.org/10.1016/j.physbeh.2024.114462.

[61]

P'eriard JD, Eijsvogels TMH, Daanen HAM.Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev. 2021; 101(4):1873-1979. https://doi.org/10.1152/physrev.00038.2020.

[62]

Cheung SS, McGarr GW, Mallette MM, et al. Separate and combined effects of dehydration and thirst sensation on exercise performance in the heat. Scand J Med Sci Sports. 2015; 25(Suppl 1):104-111. https://doi.org/10.1111/sms.12343.

[63]

Wall BA, Watson G, Peiffer JJ, Abbiss CR, Siegel R, Laursen PB. Current hydration guidelines are erroneous: dehydration does not impair exercise performance in the heat. Br J Sports Med. 2015; 49(16):1077-1083. https://doi.org/10.1136/bjsports-2013-092417.

[64]

Merry TL, Ainslie PN, Cotter JD. Effects of aerobic fitness on hypohydration- induced physiological strain and exercise impairment. Acta Physiol. 2010; 198(2): 179-190. https://doi.org/10.1111/j.1748-1716.2009.02051.x.

[65]

Holland JJ, Skinner TL, Irwin CG, Leveritt MD, Goulet EDB. The influence of drinking fluid on endurance cycling performance: a meta-analysis. Sports Med. 2017; 47(11):2269-2284. https://doi.org/10.1007/s40279-017-0739-6.

[66]

Goulet EDB, Hoffman MD. Impact of ad libitum versus programmed drinking on endurance performance: a systematic review with meta-analysis. Sports Med. 2019; 49(2):221-232. https://doi.org/10.1007/s40279-018-01051-z.

[67]

Jeker D, Claveau P, Abed MEF, et al. Programmed vs. Thirst-driven drinking during prolonged cycling in a warm environment. Nutrients. 2021; 14(1):141. https://doi.org/10.3390/nu14010141.

[68]

Kenefick RW, Cheuvront SN, Palombo LJ, Ely BR, Sawka MN. Skin temperature modifies the impact of hypohydration on aerobic performance. J Appl Physiol(1985). 2010; 109(1):79-86. https://doi.org/10.1152/japplphysiol.00135.2010.

[69]

Sawka MN, Cheuvront SN, Kenefick RW. Hypohydration and human performance: impact of environment and physiological mechanisms. Sports Med. 2015; 45(Suppl 1):S51-S60. https://doi.org/10.1007/s40279-015-0395-7.

[70]

Cheuvront SN, Kenefick RW. Dehydration: physiology, assessment, and performance effects. Compr Physiol. 2014; 4(1):257-285. https://doi.org/10.1002/cphy.c130017.

[71]

Savoie FA, Kenefick RW, Ely BR, Cheuvront SN, Goulet ED. Effect of hypohydration on muscle endurance, strength, anaerobic power and capacity and vertical jumping ability: a meta-analysis. Sports Med. 2015; 45(8):1207-1227. https://doi.org/10.1007/s40279-015-0349-0.

[72]

Merry TL, Ainslie PN, Walker R, Cotter JD. Fitness alters fluid regulatory but not behavioural responses to hypohydrated exercise. Physiol Behav. 2008; 95(3): 348-352. https://doi.org/10.1016/j.physbeh.2008.06.015.

[73]

Sawka MN, Noakes TD. Does dehydration impair exercise performance? Med Sci Sports Exerc. 2007; 39(8):1209-1217. https://doi.org/10.1249/mss.0b013e318124a664.

[74]

Sawka MN, Young AJ, Latzka WA, Neufer PD, Quigley MD, Pandolf KB. Human tolerance to heat strain during exercise: influence of hydration. J Appl Physiol(1985). 1992; 73(1):368-375. https://doi.org/10.1152/jappl.1992.73.1.368.

[75]

Sawka MN, Montain SJ, Latzka WA. Hydration effects on thermoregulation and performance in the heat. Comp Biochem Physiol Mol Integr Physiol. 2001; 128(4): 679-690. https://doi.org/10.1016/s1095-6433(01)00274-4.

[76]

Kenefick RW, Sawka MN. Heat exhaustion and dehydration as causes of marathon collapse. Sports Med. 2007; 37(4-5):378-381. https://doi.org/10.2165/00007256-200737040-00027.

[77]

Cheuvront SN, Kenefick RW, Montain SJ, Sawka MN. Mechanisms of aerobic performance impairment with heat stress and dehydration. J Appl Physiol(1985). 2010; 109(6):1989-1995. https://doi.org/10.1152/japplphysiol.00367.2010.

[78]

Cheuvront SN, Carter 3rd R, Castellani JW, Sawka MN. Hypohydration impairs endurance exercise performance in temperate but not cold air. J Appl Physiol(1985). 2005; 99(5):1972-1976. https://doi.org/10.1152/japplphysiol.00329.2005.

[79]

Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007; 39(2):377-390. https://doi.org/10.1249/mss.0b013e31802ca597.

[80]

Goulet ED. Effect of exercise-induced dehydration on endurance performance: evaluating the impact of exercise protocols on outcomes using a meta-analytic procedure. Br J Sports Med. 2013; 47(11):679-686. https://doi.org/10.1136/ bjsports-2012-090958.

[81]

Goulet ED. Effect of exercise-induced dehydration on time-trial exercise performance: a meta-analysis. Br J Sports Med. 2011; 45(14):1149-1156. https://doi.org/10.1136/bjsm.2010.077966.

[82]

Nuccio RP, Barnes KA, Carter JM, Baker LB. Fluid balance in team sport athletes and the effect of hypohydration on cognitive, technical, and physical performance. Sports Med. 2017; 47(10):1951-1982. https://doi.org/10.1007/s40279-017-0738- 7.

[83]

Alhadad SB, Tan PMS, Lee JKW. Efficacy of heat mitigation strategies on core temperature and endurance exercise: a meta-analysis. Front Physiol. 2019;10:71. https://doi.org/10.3389/fphys.2019.00071.

[84]

Trangmar SJ, Gonz'alez-Alonso J. Heat, hydration and the human brain, heart and skeletal muscles. Sports Med. 2019; 49(Suppl 1):69-85. https://doi.org/10.1007/s40279-018-1033-y.

[85]

Fan JL, Cotter JD, Lucas RA, Thomas K, Wilson L, Ainslie PN. Human cardiorespiratory and cerebrovascular function during severe passive hyperthermia: effects of mild hypohydration. J Appl Physiol (1985). 2008; 105(2): 433-445. https://doi.org/10.1152/japplphysiol.00010.2008.

[86]

Nose H, Morimoto T, Ogura K. Distribution of water losses among fluid compartments of tissues under thermal dehydration in the rat. Jpn J Physiol. 1983; 33(6):1019-1029. https://doi.org/10.2170/jjphysiol.33.1019.

[87]

Kempton MJ, Ettinger U, Schmechtig A, et al. Effects of acute dehydration on brain morphology in healthy humans. Hum Brain Mapp. 2009; 30(1):291-298. https://doi.org/10.1002/hbm.20500.

[88]

Streitbürger DP, Mo€ller HE, Tittgemeyer M, Hund-Georgiadis M, Schroeter ML, Mueller K. Investigating structural brain changes of dehydration using voxel-based morphometry. PLoS One. 2012; 7(8):e44195. https://doi.org/10.1371/journal.pone.0044195.

[89]

Dickson JM, Weavers HM, Mitchell N, et al. The effects of dehydration on brain volume - preliminary results. Int J Sports Med. 2005; 26(6):481-485. https://doi.org/10.1055/s-2004-821318.

[90]

Duning T, Kloska S, Steinstr€ater O, Kugel H, Heindel W, Knecht S. Dehydration confounds the assessment of brain atrophy. Neurology. 2005; 64(3):548-550. https://doi.org/10.1212/01.Wnl.0000150542.16969.Cc.

[91]

Watson P, Head K, Pitiot A, Morris P, Maughan RJ. Effect of exercise and heat- induced hypohydration on brain volume. Med Sci Sports Exerc. 2010; 42(12): 2197-2204. https://doi.org/10.1249/MSS.0b013e3181e39788.

[92]

Meyers SM, Tam R, Lee JS, et al. Does hydration status affect MRI measures of brain volume or water content? J Magn Reson Imag. 2016; 44(2):296-304. https://doi.org/10.1002/jmri.25168.

[93]

Kempton MJ, Ettinger U, Foster R, et al. Dehydration affects brain structure and function in healthy adolescents. Hum Brain Mapp. 2011; 32(1):71-79. https://doi.org/10.1002/hbm.20999.

[94]

Wittbrodt MT, Sawka MN, Mizelle JC, Wheaton LA, Millard-Stafford ML. Exercise- heat stress with and without water replacement alters brain structures and impairs visuomotor performance. Phys Rep. 2018; 6(16):e13805. https://doi.org/10.14814/phy2.13805.

[95]

Zhang N, Zhang J, Du S, Ma G. Dehydration and rehydration affect brain regional density and homogeneity among young male adults, determined via magnetic resonance imaging: a pilot self-control trial. Front Nutr. 2022;9:906088. https://doi.org/10.3389/fnut.2022.906088.

[96]

Goodman SPJ, Immink MA, Marino FE. Hypohydration alters pre-frontal cortex haemodynamics, but does not impair motor learning. Exp Brain Res. 2022; 240(9): 2255-2268. https://doi.org/10.1007/s00221-022-06424-5.

[97]

Egan G, Silk T, Zamarripa F, et al. Neural correlates of the emergence of consciousness of thirst. Proc Natl Acad Sci U S A. 2003; 100(25):15241-15246. https://doi.org/10.1073/pnas.2136650100.

[98]

Saker P, Farrell MJ, Adib FR, Egan GF, McKinley MJ, Denton DA. Regional brain responses associated with drinking water during thirst and after its satiation. Proc Natl Acad Sci USA. 2014; 111(14):5379-5384. https://doi.org/10.1073/ pnas.1403382111.

[99]

Goodman SP, Marino FE. Thirst perception exacerbates objective mental fatigue. Neuropsychologia. 2021;150:107686.

[100]

Wickens CD. Multiple resources and mental workload. Hum Factors. 2008; 50(3): 449-455. https://doi.org/10.1518/001872008x288394.

[101]

Gopinathan PM, Pichan G, Sharma VM. Role of dehydration in heat stress-induced variations in mental performance. Arch Environ Health. 1988; 43(1):15-17. https://doi.org/10.1080/00039896.1988.9934367.

[102]

Baker LB, Dougherty KA, Chow M, Kenney WL. Progressive dehydration causes a progressive decline in basketball skill performance. Med Sci Sports Exerc. 2007; 39(7):1114-1123. https://doi.org/10.1249/mss.0b013e3180574b02.

[103]

Watson P, Whale A, Mears SA, Reyner LA, Maughan RJ. Mild hypohydration increases the frequency of driver errors during a prolonged, monotonous driving task. Physiol Behav. 2015; 147:313-318. https://doi.org/10.1016/j.physbeh.2015.04.028.

[104]

Cian C, Barraud PA, Melin B, Raphel C. Effects of fluid ingestion on cognitive function after heat stress or exercise-induced dehydration. Int J Psychophysiol. 2001; 42(3):243-251. https://doi.org/10.1016/s0167-8760(01)00142-8.

[105]

Sharma VM, Sridharan K, Pichan G, Panwar MR. Influence of heat-stress induced dehydration on mental functions. Ergonomics. 1986; 29(6):791-799. https://doi.org/10.1080/00140138608968315.

[106]

Wittbrodt MT, Millard-Stafford M, Sherman RA, Cheatham CC. Fluid replacement attenuates physiological strain resulting from mild hypohydration without impacting cognitive performance. Int J Sport Nutr Exerc Metabol. 2015; 25(5): 439-447. https://doi.org/10.1123/ijsnem.2014-0173.

[107]

Adam GE, Carter 3rd R, Cheuvront SN, et al. Hydration effects on cognitive performance during military tasks in temperate and cold environments. Physiol Behav. 2008; 93(4-5):748-756. https://doi.org/10.1016/j.physbeh.2007.11.028.

[108]

Szinnai G, Schachinger H, Arnaud MJ, Linder L, Keller U. Effect of water deprivation on cognitive-motor performance in healthy men and women. Am J Physiol Regul Integr Comp Physiol. 2005; 289(1):R275-R280. https://doi.org/10.1152/ajpregu.00501.2004.

[109]

Armstrong LE, Ganio MS, Casa DJ, et al. Mild dehydration affects mood in healthy young women. J Nutr. 2012; 142(2):382-388. https://doi.org/10.3945/jn.111.142000.

[110]

Ely BR, Sollanek KJ, Cheuvront SN, Lieberman HR, Kenefick RW. Hypohydration and acute thermal stress affect mood state but not cognition or dynamic postural balance. Eur J Appl Physiol. 2013; 113(4):1027-1034. https://doi.org/10.1007/s00421-012-2506-6.

[111]

Ganio MS, Armstrong LE, Casa DJ, et al. Mild dehydration impairs cognitive performance and mood of men. Br J Nutr. 2011; 106(10):1535-1543. https://doi.org/10.1017/s0007114511002005.

[112]

Chang YK, Labban JD, Gapin JI, Etnier JL. The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res. 2012; 1453:87-101. https://doi.org/10.1016/j.brainres.2012.02.068.

[113]

Cullen B, O'Neill B, Evans JJ, Coen RF, Lawlor BA. A review of screening tests for cognitive impairment. J Neurol Neurosurg Psychiatry. 2007; 78(8):790-799. https://doi.org/10.1136/jnnp.2006.095414.

[114]

Wittbrodt MT, Millard-Stafford M. Dehydration impairs cognitive performance: a meta-analysis. Med Sci Sports Exerc. 2018; 50(11):2360-2368. https://doi.org/10.1249/mss.0000000000001682.

[115]

Watanabe H, Kadokura Y, Sugi T, Saito K, Nagashima K. Influence of sustained mild dehydration on thermoregulatory and cognitive functions during prolonged moderate exercise. Eur J Appl Physiol. 2024; 124(11):3457-3470. https://doi.org/10.1007/s00421-024-05548-6.

[116]

Goodman SPJ, Moreland AT, Marino FE. The effect of active hypohydration on cognitive function: a systematic review and meta-analysis. Physiol Behav. 2019; 204: 297-308. https://doi.org/10.1016/j.physbeh.2019.03.008.

[117]

Rogers PJ, Kainth A, Smit HJ. A drink of water can improve or impair mental performance depending on small differences in thirst. Appetite. 2001; 36(1):57-58. https://doi.org/10.1006/appe.2000.0374.

[118]

American College of Sports. Medicine position stand on the prevention of thermal injuries during distance running. Med Sci Sports Exerc. 1987; 19(5):529-533.

[119]

Gary J. Prevention of heat injuries during distance running. A position statement from the American College of Sports Medicine. J Sports Med. 1975; 3(4):194-196.

[120]

Costill DL, Saltin B. Factors limiting gastric emptying during rest and exercise. J Appl Physiol. 1974; 37(5):679-683. https://doi.org/10.1152/jappl.1974.37.5.679.

[121]

Fordtran JS, Saltin B. Gastric emptying and intestinal absorption during prolonged severe exercise. J Appl Physiol. 1967; 23(3):331-335. https://doi.org/10.1152/jappl.1967.23.3.331.

[122]

Gisolfi CV, Summers RD, Schedl HP, Bleiler TL. Effect of sodium concentration in a carbohydrate-electrolyte solution on intestinal absorption. Med Sci Sports Exerc. 1995; 27(10):1414-1420.

[123]

Shi X, Summers RW, Schedl HP, Flanagan SW, Chang R, Gisolfi CV. Effects of carbohydrate type and concentration and solution osmolality on water absorption. Med Sci Sports Exerc. 1995; 27(12):1607-1615.

[124]

Gisolfi CV, Summers RW, Schedl HP, Bleiler TL. Intestinal water absorption from select carbohydrate solutions in humans. J Appl Physiol(1985). 1992; 73(5): 2142-2150. https://doi.org/10.1152/jappl.1992.73.5.2142.

[125]

Ryan AJ, Lambert GP, Shi X, Chang RT, Summers RW, Gisolfi CV. Effect of hypohydration on gastric emptying and intestinal absorption during exercise. J Appl Physiol(1985). 1998; 84(5):1581-1588. https://doi.org/10.1152/jappl.1998.84.5.1581.

[126]

Leiper JB. Fate of ingested fluids: factors affecting gastric emptying and intestinal absorption of beverages in humans. Nutr Rev. 2015; 73(Suppl 2):57-72. https://doi.org/10.1093/nutrit/nuv032.

[127]

Balog EM, Golloshi M, Suh H, Millard-Stafford M. Individual variability is more important than analytical methods when calculating relative speed of beverage bioavailability. Int J Sport Nutr Exerc Metabol. 2023; 33(2):102-111. https://doi.org/10.1123/ijsnem.2022-0153.

[128]

Murray R, Eddy DE, Murray TW, Seifert JG, Paul GL, Halaby GA. The effect of fluid and carbohydrate feedings during intermittent cycling exercise. Med Sci Sports Exerc. 1987; 19(6):597-604.

[129]

Owen MD, Kregel KC, Wall PT, Gisolfi CV. Effects of ingesting carbohydrate beverages during exercise in the heat. Med Sci Sports Exerc. 1986; 18(5):568-575.

[130]

Davis JM, Lamb DR, Pate RR, Slentz CA, Burgess WA, Bartoli WP. Carbohydrate- electrolyte drinks: effects on endurance cycling in the heat. Am J Clin Nutr. 1988; 48(4):1023-1030. https://doi.org/10.1093/ajcn/48.4.1023.

[131]

Millard-Stafford ML, Sparling PB, Rosskopf LB, DiCarlo LJ. Carbohydrate- electrolyte replacement improves distance running performance in the heat. Med Sci Sports Exerc. 1992; 24(8):934-940.

[132]

Millard-Stafford ML, Sparling PB, Rosskopf LB, Snow TK. Should carbohydrate concentration of a sports drink be less than 8% during exercise in the heat? Int J Sport Nutr Exerc Metabol. 2005; 15(2):117-130. https://doi.org/10.1123/ijsnem.15.2.117.

[133]

Millard-Stafford M, Sparling PB, Rosskopf LB, Hinson BT, DiCarlo LJ. Carbohydrate- electrolyte replacement during a simulated triathlon in the heat. Med Sci Sports Exerc. 1990; 22(5):621-628. https://doi.org/10.1249/00005768-199010000-00013.

[134]

Seidman DS, Ashkenazi I, Arnon R, Shapiro Y, Epstein Y. The effects of glucose polymer beverage ingestion during prolonged outdoor exercise in the heat. Med Sci Sports Exerc. 1991; 23(4):458-462.

[135]

Millard-Stafford M, Rosskopf LB, Snow TK, Hinson BT. Water versus carbohydrate- electrolyte ingestion before and during a 15-km run in the heat. Int J Sport Nutr. 1997; 7(1):26-38. https://doi.org/10.1123/ijsn.7.1.26.

[136]

Institute of Medicine Committee on Military Nutrition R. In: Marriott BM, ed. Fluid Replacement and Heat Stress. Washington (DC): National Academies Press (US) Copyright 1994 by the National Academy of Sciences, third printing. All rights reserved; 1994.

[137]

Convertino VA, Armstrong LE, Coyle EF, et al. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 1996; 28(1): i-vii. https://doi.org/10.1097/00005768-199610000-00045.

[138]

Casa DJ, Armstrong LE, Hillman SK, et al. National athletic trainers' association position statement: fluid replacement for athletes. J Athl Train. 2000; 35(2): 212-224.

[139]

McDermott BP, Anderson SA, Armstrong LE, et al. National athletic trainers' association position statement: fluid replacement for the physically active. J Athl Train. 2017; 52(9):877-895. https://doi.org/10.4085/1062-6050-52.9.02.

[140]

Jeukendrup AE, Moseley L. Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scand J Med Sci Sports. 2010; 20(1):112-121. https://doi.org/10.1111/j.1600-0838.2008.00862.x.

[141]

Thomas DT, Erdman KA, Burke LM. Position of the academy of nutrition and Dietetics, dietitians of Canada, and the American college of sports medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016; 116(3):501-528. https://doi.org/10.1016/j.jand.2015.12.006.

[142]

McCubbin AJ, Allanson BA, Caldwell Odgers JN, et al. Sports dietitians Australia position statement: nutrition for exercise in hot environments. Int J Sport Nutr Exerc Metabol. 2020; 30(1):83-98. https://doi.org/10.1123/ijsnem.2019-0300.

[143]

Rodríguez-Hern'andez MD, Gil-Izquierdo A', García CJ, et al. Health claims for sports drinks—analytical assessment according to European food safety authority's scientific opinion. Nutrients. 2024; 16(13):1980. https://doi.org/10.3390/nu16131980.

[144]

EFSA Panel on Dietetic Products NaA. Scientific Opinion on the substantiation of health claims related to carbohydrate-electrolyte solutions and reduction in rated perceived exertion/effort during exercise (ID 460, 466, 467, 468), enhancement of water absorption during exercise (ID 314, 315, 316, 317, 319, 322, 325, 332, 408, 465, 473, 1168, 1574, 1593, 1618, 4302, 4309), and maintenance of endurance performance (ID 466, 469) pursuant to Article 13(1) of Regulation (EC) No 1924/ 2006. EFSA J. 2011; 9(6), 2011.

[145]

Thompson M, Heneghan C, Cohen D. How valid is the European Food Safety Authority's assessment of sports drinks? BMJ. 2012;345:e4753. https://doi.org/10.1136/bmj.e4753.

[146]

Bourdas DI, Souglis A, Zacharakis ED, Geladas ND, Travlos AK. Meta-analysis of carbohydrate solution intake during prolonged exercise in adults: from the last 45þ years’ perspective. Nutrients. 2021; 13(12):4223. https://doi.org/10.3390/nu13124223.

[147]

Rowlands DS, Kopetschny BH, Badenhorst CE. The hydrating effects of hypertonic, isotonic and hypotonic sports drinks and waters on central hydration during continuous exercise: a systematic meta-analysis and perspective. Sports Med. 2022; 52(2):349-375. https://doi.org/10.1007/s40279-021-01558-y.

[148]

Vandenbogaerde TJ, Hopkins WG. Effects of acute carbohydrate supplementation on endurance performance: a meta-analysis. Sports Med. 2011; 41(9):773-792. https://doi.org/10.2165/11590520-000000000-00000.

[149]

Schedl HP, Maughan RJ, Gisolfi CV. Intestinal absorption during rest and exercise: implications for formulating an oral rehydration solution (ORS). Proceedings of a roundtable discussion. April 21-22, 1993. Med Sci Sports Exerc. 1994; 26(3): 267-280.

[150]

Davis JM, Lamb DR, Burgess WA, Bartoli WP.Accumulation of deuterium oxide in body fluids after ingestion of D2O-labeled beverages. J Appl Physiol(1985). 1987; 63(5):2060-2066. https://doi.org/10.1152/jappl.1987.63.5.2060.

[151]

Church A, Lee F, Buono MJ. Transition duration of ingested deuterium oxide to eccrine sweat during exercise in the heat. J Therm Biol. 2017; 63:88-91. https://doi.org/10.1016/j.jtherbio.2016.11.018.

[152]

Armstrong LE, Klau JF, Ganio MS, et al. Accumulation of 2H2O in plasma and eccrine sweat during exercise-heat stress. Eur J Appl Physiol. 2010; 108(3):477-482. https://doi.org/10.1007/s00421-009-1223-2.

[153]

Gisolfi CV, Summers RW, Schedl HP, Bleiler TL, Oppliger RA.Human intestinal water absorption: direct vs. indirect measurements. Am J Physiol. 1990; 258(2 Pt1): G216-G222. https://doi.org/10.1152/ajpgi.1990.258.2.G216.

[154]

Davis JM, Burgess WA, Slentz CA, Bartoli WP. Fluid availability of sports drinks differing in carbohydrate type and concentration. Am J Clin Nutr. 1990; 51(6): 1054-1057. https://doi.org/10.1093/ajcn/51.6.1054.

[155]

Loo DD, Zeuthen T, Chandy G, Wright EM. Cotransport of water by the Naþ/ glucose cotransporter. Proc Natl Acad Sci U S A. 1996; 93(23):13367-13370. https://doi.org/10.1073/pnas.93.23.13367.

[156]

P'eronnet F, Mignault D, du Souich P, et al. Pharmacokinetic analysis of absorption, distribution and disappearance of ingested water labeled with D₂O in humans. Eur J Appl Physiol. 2012; 112(6):2213-2222. https://doi.org/10.1007/s00421-011-2194-7.

[157]

Currell K, Urch J, Cerri E, Jentjens RL, Blannin AK, Jeukendrup AE. Plasma deuterium oxide accumulation following ingestion of different carbohydrate beverages. Appl Physiol Nutr Metabol. 2008; 33(6):1067-1072. https://doi.org/10.1139/h08-084.

[158]

Koulmann N, Melin B, Jimenez C, Charpenet A, Savourey G, Bittel J. Effects of different carbohydrate-electrolyte beverages on the appearance of ingested deuterium in body fluids during moderate exercise by humans in the heat. Eur J Appl Physiol Occup Physiol. 1997; 75(6):525-531. https://doi.org/10.1007/s004210050199.

[159]

Hill RJ, Bluck LJ, Davies PS. The hydration ability of three commercially available sports drinks and water. J Sci Med Sport. 2008; 11(2):116-123. https://doi.org/10.1016/j.jsams.2006.12.117.

[160]

Lambert CP, Ball D, Leiper JB, Maughan RJ. The use of a deuterium tracer technique to follow the fate of fluids ingested by human subjects: effects of drink volume and tracer concentration and content. Exp Physiol. 1999; 84(2):391-399. https://pubm ed.ncbi.nlm.nih.gov/10226179/.

[161]

Jeukendrup AE, Currell K, Clarke J, Cole J, Blannin AK. Effect of beverage glucose and sodium content on fluid delivery. Nutr Metab. 2009;6:9. https://doi.org/10.1186/1743-7075-6-9.

[162]

Funnell MP, Juett LA, Reynolds KM, et al. Iterative assessment of a sports rehydration beverage containing a novel amino acid formula on water uptake kinetics. Eur J Nutr. 2024; 63(4):1125-1137. https://doi.org/10.1007/s00394-024-03325-x.

[163]

Murray R, Bartoli WP, Eddy DE, Horn MK. Gastric emptying and plasma deuterium accumulation following ingestion of water and two carbohydrate-electrolyte beverages. Int J Sport Nutr. 1997; 7(2):144-153. https://doi.org/10.1123/ijsn.7.2.144.

[164]

Rehrer NJ, Wagenmakers AJ, Beckers EJ, et al. Gastric emptying, absorption, and carbohydrate oxidation during prolonged exercise. J Appl Physiol(1985). 1992; 72(2):468-475. https://doi.org/10.1152/jappl.1992.72.2.468.

[165]

Rowlands DS, Bonetti DL, Hopkins WG. Unilateral fluid absorption and effects on peak power after ingestion of commercially available hypotonic, isotonic, and hypertonic sports drinks. Int J Sport Nutr Exerc Metabol. 2011; 21(6):480-491. https://doi.org/10.1123/ijsnem.21.6.480.

[166]

Millard-Stafford ML, Sparling PB, Rosskopf LB, Baker CR, Vandromme M. Beverage osmolality: No affect on fluid delivery in the heat. Med Sci Sports Exerc. 2003; 35(5): S311.

[167]

Millard-Stafford ML, Cureton KJ, Wingo JE, Trilk J, Warren GL, Buyckx M. Hydration during exercise in warm, humid conditions: effect of a caffeinated sports drink. Int J Sport Nutr Exerc Metabol. 2007; 17(2):163-177. https://doi.org/10.1123/ijsnem.17.2.163.

[168]

Cureton KJ, Warren GL, Millard-Stafford ML, Wingo JE, Trilk J, Buyckx M. Caffeinated sports drink: ergogenic effects and possible mechanisms. Int J Sport Nutr Exerc Metabol. 2007; 17(1):35-55. https://doi.org/10.1123/ijsnem.17.1.35.

[169]

Naulleau C, Jeker D, Pancrate T, et al. Effect of pre-exercise caffeine intake on endurance performance and core temperature regulation during exercise in the heat: a systematic review with meta-analysis. Sports Med. 2022; 52(10):2431-2445. https://doi.org/10.1007/s40279-022-01692-1.

[170]

Bro€er S, Fairweather SJ. Amino acid transport across the mammalian intestine. Compr Physiol. 2018; 9(1):343-373. https://doi.org/10.1002/cphy.c170041.

[171]

Mailliard ME, Stevens BR, Mann GE. Amino acid transport by small intestinal, hepatic, and pancreatic epithelia. Gastroenterology. 1995; 108(3):888-910. https://doi.org/10.1016/0016-5085(95)90466-2.

[172]

Maughan RJ, Leiper JB, Vist GE. Gastric emptying and fluid availability after ingestion of glucose and soy protein hydrolysate solutions in man. Exp Physiol. 2004; 89(1):101-108. https://doi.org/10.1113/expphysiol.2003.002655.

[173]

P'erez-Castillo 'IM, Williams JA, Lo'pez-Chicharro J, et al. Compositional aspects of beverages designed to promote hydration before, during, and after exercise: concepts revisited. Nutrients. 2023; 16(1):17. https://doi.org/10.3390/nu16010017.

[174]

Jentjens RL, Underwood K, Achten J, Currell K, Mann CH, Jeukendrup AE. Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J Appl Physiol(1985). 2006; 100(3): 807-816. https://doi.org/10.1152/japplphysiol.00322.2005.

[175]

Gisolfi CV, Lambert GP, Summers RW. Intestinal fluid absorption during exercise: role of sport drink osmolality and [Naþ]. Med Sci Sports Exerc. 2001; 33(6):907-915. https://doi.org/10.1097/00005768-200106000-00009.

[176]

Chauhan A, Das S, Miller R, et al. Can an amino acid mixture alleviate gastrointestinal symptoms in neuroendocrine tumor patients? BMC Cancer. 2021; 21(1):580. https://doi.org/10.1186/s12885-021-08315-4.

AI Summary AI Mindmap
PDF (838KB)

498

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/