Effects of high-intensity intermittent cross-training on maximal oxygen uptake
Xin Liu , Katsunori Tsuji , Yuzhong Xu , Motoyuki Iemitsu , Izumi Tabata
Sports Medicine and Health Science ›› 2025, Vol. 7 ›› Issue (3) : 185 -189.
Effects of high-intensity intermittent cross-training on maximal oxygen uptake
We investigated the effects of high-intensity intermittent cross-training (HIICT) on maximal oxygen uptake (V˙O2max). The HIICT consisted of alternating intermittent 20-s treadmill running (1st, 3rd, 5th, and 7th bouts) and 20-s bicycle exercise (2nd, 4th, and 6th bouts) with a 10-s rest period. Each intensity for running and bicycling of the HIICT corresponded to an oxygen demand of ∼160% and ∼170% of the V˙O2max, respectively. Fifteen healthy young males (aged [24 ± 1] yrs) were randomly assigned to training (TG, n = 8) and non-training control (CG, n = 7) groups. The TG completed this HIICT daily 4 days/week for 6 weeks. Significant group × time interactions were observed for both the running and bicycling V˙O2max (p < 0.001 each). After the training, the V˙O2max for both running ([57.4 ± 4.8] mL·kg−1·min−1) and bicycling ([50.6 ± 3.7] mL·kg−1·min−1) in the TG were significantly higher than those for running ([50.1 ± 3.1] mL·kg−1·min−1) and bicycling ([43.7 ± 3.6] mL·kg−1·min−1) in the CG, respectively (p < 0.01 each). Post-hoc tests revealed a significant increase in V˙O2max for running and bicycling in the TG after the HIICT (p < 0.001 each) but no significant difference in the CG. These results demonstrated that the newly developed HIICT increases the V˙O2max for both running and bicycling.
Maximal oxygen uptake / Bicycling / Running / Cross-training / High intensity
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
/
| 〈 |
|
〉 |