Mechanisms of muscle repair after peripheral nerve injury by electrical stimulation combined with blood flow restriction training

Xiaolei Chu , Jiaojiao Sun , Jiajia Liang , Wenjie Liu , Zheng Xing , Qi Li , Qingwen Li

Sports Medicine and Health Science ›› 2025, Vol. 7 ›› Issue (3) : 173 -184.

PDF (1459KB)
Sports Medicine and Health Science ›› 2025, Vol. 7 ›› Issue (3) : 173 -184. DOI: 10.1016/j.smhs.2024.10.002
Reviews

Mechanisms of muscle repair after peripheral nerve injury by electrical stimulation combined with blood flow restriction training

Author information +
History +
PDF (1459KB)

Abstract

This review elucidates the impact of electrical stimulation (ES) and blood flow restriction (BFR) training on muscle function. ES induces a transformation in muscle fibers type by rearranging myosin heavy chain isoform patterns. Additionally, it influences muscle protein synthesis and degradation through specific signaling pathways such as protein kinase B/mechanistic target of rapamycin (Akt/mTOR), as well as via autophagy and the ubiquitin-proteasome system, thereby effectively maintaining muscle mass. BFR, on the other hand, restricts muscle blood flow, leading to metabolic products accumulation and localized hypoxia, which not only promotes the recruitment of fast-twitch fibers but also activates the mTOR signaling pathway, enhancing muscle protein synthesis. The combination of ES and BFR synergistically facilitates muscle protein synthesis through the mTOR pathway, thereby accelerating the recovery of muscle function following peripheral nerve injury.

Keywords

Electrical stimulation / Blood flow restriction / Muscle fibers / mTOR / Muscle protein synthesis

Cite this article

Download citation ▾
Xiaolei Chu, Jiaojiao Sun, Jiajia Liang, Wenjie Liu, Zheng Xing, Qi Li, Qingwen Li. Mechanisms of muscle repair after peripheral nerve injury by electrical stimulation combined with blood flow restriction training. Sports Medicine and Health Science, 2025, 7(3): 173-184 DOI:10.1016/j.smhs.2024.10.002

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xiaolei Chu: Writing - original draft. Jiaojiao Sun: Writing - original draft. Jiajia Liang: Writing - review & editing. Wenjie Liu: Writing - review & editing. Zheng Xing: Writing - review & editing. Qi Li: Writing - review & editing. Qingwen Li: Writing - review & editing.

Declaration of competing interest

We confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that we have followed the regulations of our institutions concerning intellectual property.

References

[1]

Padovano WM, Dengler J, Patterson MM, et al. Incidence of nerve injury after extremity trauma in the United States. Hand. 2022; 17(4):615-623. https://doi.org/10.1177/1558944720963895.

[2]

Li R, Liu Z, Pan Y, Chen L, Zhang Z, Lu L. Peripheral nerve injuries treatment: a systematic review. Cell Biochem Biophys. 2014; 68(3):449-454. https://doi.org/10.1007/s12013-013-9742-1.

[3]

Loenneke JP, Wilson GJ, Wilson JM. A mechanistic approach to blood flow occlusion. Int J Sports Med. 2010; 31(1):1-4. https://doi.org/10.1055/s-0029-1239499.

[4]

Brocherie F, Babault N, Cometti G, Maffiuletti N, Chatard JC. Electrostimulation training effects on the physical performance of ice hockey players. Med Sci Sports Exerc. 2005; 37(3):455-460. https://doi.org/10.1249/01.mss.0000155396.51293.9f.

[5]

Gregory CM, Bickel CS. Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther. 2005; 85(4):358-364. https://doi.org/10.1093/ptj/85.4.358.

[6]

Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011; 91(4):1447-1531. https://doi.org/10.1152/physrev.00031.2010.

[7]

Pette D, Staron RS. Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech. 2000; 50(6):500-509. https://doi.org/10.1002/1097-0029(20000915)50:6<500::AID-JEMT7>3.0.CO;2-7.

[8]

Salanova M, Gelfi C, Moriggi M, et al. Disuse deterioration of human skeletal muscle challenged by resistive exercise superimposed with vibration: evidence from structural and proteomic analysis. FASEB J. 2014; 28(11):4748-4763. https://doi.org/10.1096/fj.14-252825.

[9]

Smerdu V, Karsch-Mizrachi I, Campione M, Leinwand L, Schiaffino S. Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. Am J Physiol. 1994; 267(6 Pt 1):C1723-C1728. https://doi.org/10.1152/ajpcell.1994.267.6.C1723.

[10]

Weiss S, Rossi R, Pellegrino MA, Bottinelli R, Geeves MA. Differing ADP release rates from myosin heavy chain isoforms define the shortening velocity of skeletal muscle fibers. J Biol Chem. 2001; 276(49):45902-45908. https://doi.org/10.1074/jbc.M107434200.

[11]

Matsakas A, Patel K. Skeletal muscle fibre plasticity in response to selected environmental and physiological stimuli. Histol Histopathol. 2009; 24(5):611-629. https://doi.org/10.14670/HH-24.611.

[12]

Ohlendieck K. Proteomic profiling of fast-to-slow muscle transitions during aging. Front Physiol. 2011; 2:105. https://doi.org/10.3389/fphys.2011.00105.

[13]

Jackson HE, Ingham PW. Control of muscle fibre-type diversity during embryonic development: the zebrafish paradigm. Mech Dev. 2013; 130(9-10):447-457. https://doi.org/10.1016/j.mod.2013.06.001.

[14]

Hoppeler H. Molecular networks in skeletal muscle plasticity. J Exp Biol. 2016; 219(Pt 2):205-213. https://doi.org/10.1242/jeb.128207.

[15]

Pette D. The adaptive potential of skeletal muscle fibers. Can J Appl Physiol. 2002; 27(4):423-448. https://doi.org/10.1139/h02-023.

[16]

Moriggi M, Vasso M, Fania C, et al. Long term bed rest with and without vibration exercise countermeasures: effects on human muscle protein dysregulation. Proteomics. 2010; 10(21):3756-3774. https://doi.org/10.1002/pmic.200900817.

[17]

Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov. 2015; 14(1):58-74. https://doi.org/10.1038/nrd4467.

[18]

Chargé SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004; 84(1):209-238. https://doi.org/10.1152/physrev.00019.2003.

[19]

Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001; 294(5547):1704-1708. https://doi.org/10.1126/science.1065874.

[20]

Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech. 2013; 6(1):25-39. https://doi.org/10.1242/dmm.010389.

[21]

Marimuthu K, Murton AJ, Greenhaff PL. Mechanisms regulating muscle mass during disuse atrophy and rehabilitation in humans. J Appl Physiol (1985). 2011; 110(2):555-560. https://doi.org/10.1152/japplphysiol.00962.2010.

[22]

Jokl P, Konstadt S. The effect of limb immobilization on muscle function and protein composition. Clin Orthop Relat Res. 1983; 174:222-229. https://doi.org/10.1097/00003086-198304000-00031.

[23]

Booth FW. Effect of limb immobilization on skeletal muscle. J Appl Physiol Respir Environ Exerc Physiol. 1982; 52(5):1113-1118. https://doi.org/10.1152/jappl.1982.52.5.1113.

[24]

Liu X, Yuan H, Niu Y, Niu W, Fu L. The role of AMPK/mTOR/S6K1 signaling axis in mediating the physiological process of exercise-induced insulin sensitization in skeletal muscle of C57BL/6 mice. Biochim Biophys Acta. 2012; 1822(11):1716-1726. https://doi.org/10.1016/j.bbadis.2012.07.008.

[25]

Levitt DE, Luk HY, Vingren JL. Alcohol, resistance exercise, and mTOR pathway signaling: an evidence-based narrative review. Biomolecules. 2022; 13(1):2. https://doi.org/10.3390/biom13010002.

[26]

D'Hulst G, Palmer AS, Masschelein E, Bar-Nur O, De Bock K. Voluntary resistance running as a model to induce mTOR activation in mouse skeletal muscle. Front Physiol. 2019; 10:1271. https://doi.org/10.3389/fphys.2019.01271.

[27]

Yin L, Lu L, Lin X, Wang X. Crucial role of androgen receptor in resistance and endurance trainings-induced muscle hypertrophy through IGF-1/IGF-1R- PI3K/AktmTOR pathway. Nutr Metab. 2020; 17:26. https://doi.org/10.1186/s12986-020-00446-y.

[28]

Bai I, Keyser C, Zhang Z, et al. Epigenetic regulation of autophagy in neuroinflammation and synaptic plasticity. Front Immunol. 2024; 15:1322842. https://doi.org/10.3389/fimmu.2024.1322842.

[29]

Kataoka R, Hammert WB, Yamada Y, et al. The plateau in muscle growth with resistance training: an exploration of possible mechanisms. Sports Med. 2024; 54(1): 31-48. https://doi.org/10.1007/s40279-023-01932-y.

[30]

Ogasawara R, Jensen TE, Goodman CA, Hornberger TA. Resistance exerciseinduced hypertrophy: a potential role for rapamycin-insensitive mTOR. Exerc Sport Sci Rev. 2019; 47(3):188-194. https://doi.org/10.1249/JES.0000000000000189.

[31]

Masui K, Tanaka K, Akhavan D, et al. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metabol. 2013; 18(5):726-739. https://doi.org/10.1016/j.cmet.2013.09.013.

[32]

Van Riggelen J, Yetil A, Felsher DW. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer. 2010; 10(4):301-309. https://doi.org/10.1038/nrc2819.

[33]

Rion N, Castets P, Lin S, Enderle L, Reinhard JR, Rüegg MA. mTORC2 affects the maintenance of the muscle stem cell pool. Skeletal Muscle. 2019; 9(1):30. https://doi.org/10.1186/s13395-019-0217-y.

[34]

Kirschbaum BJ, Schneider S, Izumo S, Mahdavi V, Nadal-Ginard B, Pette D. Rapid and reversible changes in myosin heavy chain expression in response to increased neuromuscular activity of rat fast-twitch muscle. FEBS Lett. 1990; 268(1):75-78. https://doi.org/10.1016/0014-5793(90)80976-p.

[35]

Wehrle U, Düsterh€oft S, Pette D. Effects of chronic electrical stimulation on myosin heavy chain expression in satellite cell cultures derived from rat muscles of different fiber-type composition. Differentiation. 1994; 58(1):37-46. https://doi.org/10.1046/j.1432-0436.1994.5810037.x.

[36]

Windisch A, Gundersen K, Szabolcs MJ, Gruber H, Lømo T. Fast to slow transformation of denervated and electrically stimulated rat muscle. J Physiol. 1998; 510(Pt 2):623-632. https://doi.org/10.1111/j.1469-7793.1998.623bk.x.

[37]

Mabuchi K, Szvetko D, Pintér K, Sréter FA. Type IIB to IIA fiber transformation in intermittently stimulated rabbit muscles. Am J Physiol. 1982; 242(5):C373-C381. https://doi.org/10.1152/ajpcell.1982.242.5.C373.

[38]

Leeuw T, Pette D. Coordinate changes in the expression of troponin subunit and myosin heavy-chain isoforms during fast-to-slow transition of low-frequencystimulated rabbit muscle. Eur J Biochem. 1993; 213(3):1039-1046. https://doi.org/10.1111/j.1432-1033.1993.tb17851.x.

[39]

Brownson C, Little P, Jarvis JC, Salmons S. Reciprocal changes in myosin isoform mRNAs of rabbit skeletal muscle in response to the initiation and cessation of chronic electrical stimulation. Muscle Nerve. 1992; 15(6):694-700. https://doi.org/10.1002/mus.880150611.

[40]

Andersen JL, Mohr T, Biering-Sørensen F, Galbo H, Kjaer M. Myosin heavy chain isoform transformation in single fibres from m. vastus lateralis in spinal cord injured individuals: effects of long-term functional electrical stimulation (FES). Pflügers Archiv. 1996; 431(4):513-518. https://doi.org/10.1007/BF02191897.

[41]

Nuhr M, Crevenna R, Gohlsch B, et al. Functional and biochemical properties of chronically stimulated human skeletal muscle. Eur J Appl Physiol. 2003; 89(2): 202-208. https://doi.org/10.1007/s00421-003-0792-8.

[42]

Gondin J, Brocca L, Bellinzona E, et al. Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. J Appl Physiol (1985). 2011; 110(2):433-450. https://doi.org/10.1152/japplphysiol.00914.2010.

[43]

Termin A, Staron RS, Pette D. Changes in myosin heavy chain isoforms during chronic low-frequency stimulation of rat fast hindlimb muscles. A single-fiber study. Eur J Biochem. 1989; 186(3):749-754. https://doi.org/10.1111/j.1432-1033.1989.tb15269.x.

[44]

Aigner S, Pette D. Fast-to-slow transition in myosin heavy chain expression of rabbit muscle fibres induced by chronic low-frequency stimulation. Symp Soc Exp Biol. 1992;46:311-317.

[45]

Kirschbaum BJ, Heilig A, H€artner KT, Pette D. Electrostimulation-induced fast-toslow transitions of myosin light and heavy chains in rabbit fast-twitch muscle at the mRNA level. FEBS Lett. 1989; 243(2):123-126. https://doi.org/10.1016/0014-5793(89)80112-7.

[46]

Nuhr MJ, Pette D, Berger R, et al. Beneficial effects of chronic low-frequency stimulation of thigh muscles in patients with advanced chronic heart failure. Eur Heart J. 2004; 25(2):136-143. https://doi.org/10.1016/j.ehj.2003.09.027.

[47]

Abdellaoui A, Préfaut C, Gouzi F, et al. Skeletal muscle effects of electrostimulation after COPD exacerbation: a pilot study. Eur Respir J. 2011; 38(4):781-788. https://doi.org/10.1183/09031936.00167110.

[48]

Toth MJ, Voigt TB, Tourville TW, et al. Effect of neuromuscular electrical stimulation on skeletal muscle size and function in patients with breast cancer receiving chemotherapy. J Appl Physiol (1985). 2020; 128(6):1654-1665. https://doi.org/10.1152/japplphysiol.00203.2020.

[49]

Toth MJ, Tourville TW, Voigt TB, et al. Utility of neuromuscular electrical stimulation to preserve quadriceps muscle fiber size and contractility after anterior cruciate ligament injuries and reconstruction: a randomized, sham-controlled, blinded trial. Am J Sports Med. 2020; 48(10):2429-2437. https://doi.org/10.1177/0363546520933622.

[50]

Fan Y, Dickman KG, Zong WX. Akt and c-Myc differentially activate cellular metabolic programs and prime cells to bioenergetic inhibition. J Biol Chem. 2010; 285(10):7324-7333. https://doi.org/10.1074/jbc.M109.035584.

[51]

Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007; 129(7):1261-1274. https://doi.org/10.1016/j.cell.2007.06.009.

[52]

Robey RB, Hay N. Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol. 2009; 19(1):25-31. https://doi.org/10.1016/j.semcancer.2008.11.010.

[53]

Shiojima I, Walsh K. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res. 2002; 90(12):1243-1250. https://doi.org/10.1161/01.res.0000022200.71892.9f.

[54]

An WL, Cowburn RF, Li L, et al. Up-regulation of phosphorylated/activated p 70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer's disease. Am J Pathol. 2003; 163(2):591-607. https://doi.org/10.1016/S0002-9440(10)63687-5.

[55]

Isotani S, Hara K, Tokunaga C, Inoue H, Avruch J, Yonezawa K. Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem. 1999; 274(48):34493-34498. https://doi.org/10.1074/jbc.274.48.34493.

[56]

Sasai N, Agata N, Inoue-Miyazu M, et al. Involvement of PI3K/Akt/TOR pathway in stretch-induced hypertrophy of myotubes. Muscle Nerve. 2010; 41(1):100-106. https://doi.org/10.1002/mus.21473.

[57]

Navé BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 1999; 344(Pt 2):427-431. Pt 2.

[58]

Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001; 3(11):1014-1019. https://doi.org/10.1038/ncb1101-1014.

[59]

Sugiura T, Abe N, Nagano M, et al. Changes in PKB/Akt and calcineurin signaling during recovery in atrophied soleus muscle induced by unloading. Am J Physiol Regul Integr Comp Physiol. 2005; 288(5):R1273-R1278. https://doi.org/10.1152/ajpregu.00688.2004.

[60]

Ohno Y, Fujiya H, Goto A, et al. Microcurrent electrical nerve stimulation facilitates regrowth of mouse soleus muscle. Int J Med Sci. 2013; 10(10):1286-1294. https://doi.org/10.7150/ijms.5985.

[61]

Dirks ML, Hansen D, Van Assche A, Dendale P, Van Loon LJ. Neuromuscular electrical stimulation prevents muscle wasting in critically ill comatose patients. Clin Sci (Lond). 2015; 128(6):357-365. https://doi.org/10.1042/CS20140447.

[62]

Wall BT, Dirks ML, Verdijk LB, et al. Neuromuscular electrical stimulation increases muscle protein synthesis in elderly type 2 diabetic men. Am J Physiol Endocrinol Metab. 2012; 303(5):E614-E623. https://doi.org/10.1152/ajpendo.00138.2012.

[63]

Mettler JA, Bennett SM, Doucet BM, Magee DM. Neuromuscular electrical stimulation and anabolic signaling in patients with stroke. J Stroke Cerebrovasc Dis. 2017; 26(12):2954-2963. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.07.019.

[64]

Khodabukus A, Madden L, Prabhu NK, et al. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials. 2019; 198:259-269. https://doi.org/10.1016/j.biomaterials.2018.08.058.

[65]

Liu AY, Zhang QB, Zhu HL, et al. Low-frequency electrical stimulation alleviates immobilization-evoked disuse muscle atrophy by repressing autophagy in skeletal muscle of rabbits. BMC Muscoskel Disord. 2022; 23(1):398. https://doi.org/10.1186/s12891-022-05350-5.

[66]

Kanazashi M, Tanaka M. Acute effect of electrical stimulation on muscle protein synthesis and break-down in the soleus muscle of hindlimb unloaded rats. Biomed Res. 2023; 44(5):209-218. https://doi.org/10.2220/biomedres.44.209.

[67]

Hutber CA, Hardie DG, Winder WW. Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. Am J Physiol. 1997; 272(2 Pt 1):E262-E266. https://doi.org/10.1152/ajpendo.1997.272.2.E262.

[68]

Lee K, Ochi E, Song H, Nakazato K. Activation of AMP-activated protein kinase induce expression of FoxO1, FoxO3a, and myostatin after exercise-induced muscle damage. Biochem Biophys Res Commun. 2015; 466(3):289-294. https://doi.org/10.1016/j.bbrc.2015.08.126.

[69]

Bayol S, Brownson C, Loughna PT. Electrical stimulation modulates IGF binding protein transcript levels in C2C12 myotubes. Cell Biochem Funct. 2005; 23(5): 361-365. https://doi.org/10.1002/cbf.1118.

[70]

Scott BR, Loenneke JP, Slattery KM, Dascombe BJ. Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sports Med. 2015; 45(3):313-325. https://doi.org/10.1007/s40279-014-0288-1.

[71]

Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc. 2000; 32(12): 2035-2039. https://doi.org/10.1097/00005768-200012000-00011.

[72]

Ohta H, Kurosawa H, Ikeda H, Iwase Y, Satou N, Nakamura S. Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop Scand. 2003; 74(1):62-68. https://doi.org/10.1080/00016470310013680.

[73]

Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol (1985). 2000; 88(1):61-65. https://doi.org/10.1152/jappl.2000.88.1.61.

[74]

Cook CJ, Kilduff LP, Beaven CM. Improving strength and power in trained athletes with 3 weeks of occlusion training. Int J Sports Physiol Perform. 2014; 9(1):166-172. https://doi.org/10.1123/ijspp.2013-0018.

[75]

Yuan J, Wu L, Xue Z, Xu G, Wu Y. Application and progress of blood flow restriction training in improving muscle mass and strength in the elderly. Front Physiol. 2023; 14:1155314. https://doi.org/10.3389/fphys.2023.1155314.

[76]

Loenneke JP, Fahs CA, Rossow LM, Abe T, Bemben MG. The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. Med Hypotheses. 2012; 78(1):151-154. https://doi.org/10.1016/j.mehy.2011.10.014.

[77]

Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013; 43(3):179-194. https://doi.org/10.1007/s40279-013-0017-1.

[78]

Loenneke JP, Fahs CA, Wilson JM, Bemben MG. Blood flow restriction: the metabolite/volume threshold theory. Med Hypotheses. 2011; 77(5):748-752. https://doi.org/10.1016/j.mehy.2011.07.029.

[79]

Yasuda T, Abe T, Brechue WF, et al. Venous blood gas and metabolite response to low-intensity muscle contractions with external limb compression. Metabolism. 2010; 59(10):1510-1519. https://doi.org/10.1016/j.metabol.2010.01.016.

[80]

Henneman E, Somjen G, Carpenter DO. Functional significance of cell size Iin spinal motoneurons. J Neurophysiol. 1965; 28:560-580. https://doi.org/10.1152/jn.1965.28.3.560.

[81]

Yanagisawa O, Sanomura M. Effects of low-load resistance exercise with blood flow restriction on high-energy phosphate metabolism and oxygenation level in skeletal muscle. Interv Med Appl Sci. 2017; 9(2):67-75. https://doi.org/10.1556/1646.9.2017.2.16.

[82]

Suga T, Okita K, Morita N, et al. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol (1985). 2009; 106(4): 1119-1124. https://doi.org/10.1152/japplphysiol.90368.2008.

[83]

Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M. Oxygen availability and motor unit activity in humans. Eur J Appl Physiol Occup Physiol. 1992; 64(6):552-556. https://doi.org/10.1007/BF00843767.

[84]

Loenneke JP, Abe T, Wilson JM, Ugrinowitsch C, Bemben MG. Blood flow restriction: how does it work? Front Physiol. 2012; 3:392. https://doi.org/10.3389/fphys.2012.00392.

[85]

Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013; 43(3):179-194. https://doi.org/10.1007/s40279-013-0017-1.

[86]

Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol (1985). 2000; 88(1):61-65. https://doi.org/10.1152/jappl.2000.88.1.61.

[87]

Abe T, Kearns CF, Sato Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol (1985). 2006; 100(5):1460-1466. https://doi.org/10.1152/japplphysiol.01267.2005.

[88]

Pearson SJ, Hussain SR. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 2015; 45(2):187-200. https://doi.org/10.1007/s40279-014-0264-9.

[89]

Suga T, Okita K, Morita N, et al. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol (1985). 2009; 106(4): 1119-1124. https://doi.org/10.1152/japplphysiol.90368.2008.

[90]

Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol (1985). 2000; 88(6):2097-2106. https://doi.org/10.1152/jappl.2000.88.6.2097.

[91]

Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol. 2002; 86(4):308-314. https://doi.org/10.1007/s00421-001-0561-5.

[92]

Sudo M, Ando S, Kano Y. Repeated blood flow restriction induces muscle fiber hypertrophy. Muscle Nerve. 2017; 55(2):274-276. https://doi.org/10.1002/mus.25415.

[93]

Wang J, Mogensen AG, Thybo F, et al. Low-load blood flow-restricted resistance exercise produces fiber type-independent hypertrophy and improves muscle functional capacity in older individuals. J Appl Physiol (1985). 2023; 134(4): 1047-1062. https://doi.org/10.1152/japplphysiol.00789.2022.

[94]

Libardi CA, Godwin JS, Reece TM, Ugrinowitsch C, Herda TJ, Roberts MD. Effects of low-load resistance training with blood flow restriction on muscle fiber myofibrillar and extracellular area. Front Physiol. 2024; 15:1368646. https://doi.org/10.3389/fphys.2024.1368646.

[95]

Lixandrão ME, Ugrinowitsch C, Berton R, et al. Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and metaanalysis. Sports Med. 2018; 48(2):361-378. https://doi.org/10.1007/s40279-017-0795-y.

[96]

Fujita S, Abe T, Drummond MJ, et al. Blood flow restriction during low-intensity resistance exercise increases S6K 1 phosphorylation and muscle protein synthesis. J Appl Physiol (1985). 2007; 103(3):903-910. https://doi.org/10.1152/japplphysiol.00195.2007.

[97]

Pierce JR, Clark BC, Ploutz-Snyder LL, Kanaley JA. Growth hormone and muscle function responses to skeletal muscle ischemia. J Appl Physiol (1985). 2006; 101(6): 1588-1595. https://doi.org/10.1152/japplphysiol.00585.2006.

[98]

Takano H, Morita T, Iida H, et al. Hemodynamic and hormonal responses to a shortterm low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol. 2005; 95(1):65-73. https://doi.org/10.1007/s00421-005-1389-1.

[99]

Abe T, Kearns CF, Sato Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol (1985). 2006; 100(5):1460-1466. https://doi.org/10.1152/japplphysiol.01267.2005.

[100]

Wernbom M, Apro W, Paulsen G, Nilsen TS, Blomstrand E, Raastad T. Acute lowload resistance exercise with and without blood flow restriction increased protein signalling and number of satellite cells in human skeletal muscle. Eur J Appl Physiol. 2013; 113(12):2953-2965. https://doi.org/10.1007/s00421-013-2733-5.

[101]

Rommel C, Bodine SC, Clarke BA, et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol. 2001; 3(11):1009-1013. https://doi.org/10.1038/ncb1101-1009.

[102]

Baar K, Esser K. Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol. 1999; 276(1):C120-C127. https://doi.org/10.1152/ajpcell.1999.276.1.C120.

[103]

O'Neil TK, Duffy LR, Frey JW, Hornberger TA. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol. 2009; 587(Pt 14):3691-3701. https://doi.org/10.1113/jphysiol.2009.173609.

[104]

Reynolds TH 4th, Bodine SC, Lawrence Jr JC. Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J Biol Chem. 2002; 277(20):17657-17662. https://doi.org/10.1074/jbc.M201142200.

[105]

Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013; 280(17):4294-4314. https://doi.org/10.1111/febs.12253.

[106]

Ge Y, Chen J. Mammalian target of rapamycin (mTOR) signaling network in skeletal myogenesis. J Biol Chem. 2012; 287(52):43928-43935. https://doi.org/10.1074/jbc.R112.406942.

[107]

Fry CS, Glynn EL, Drummond MJ, et al. Blood flow restriction exercise stimulates mTORC 1 signaling and muscle protein synthesis in older men. J Appl Physiol (1985). 2010; 108(5):1199-1209. https://doi.org/10.1152/japplphysiol.01266.2009.

[108]

Drummond MJ, Fry CS, Glynn EL, et al. Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol. 2009; 587(Pt 7):1535-1546. https://doi.org/10.1113/jphysiol.2008.163816.

[109]

Nakajima T, Yasuda T, Koide S, et al. Repetitive restriction of muscle blood flow enhances mTOR signaling pathways in a rat model. Heart Ves. 2016; 31(10): 1685-1695. https://doi.org/10.1007/s00380-016-0801-6.

[110]

Kubota A, Sakuraba K, Sawaki K, Sumide T, Tamura Y. Prevention of disuse muscular weakness by restriction of blood flow. Med Sci Sports Exerc. 2008; 40(3): 529-534. https://doi.org/10.1249/MSS.0b013e31815ddac6.

[111]

Kubota A, Sakuraba K, Koh S, Ogura Y, Tamura Y. Blood flow restriction by low compressive force prevents disuse muscular weakness. J Sci Med Sport. 2011; 14(2): 95-99. https://doi.org/10.1016/j.jsams.2010.08.007.

[112]

Fuchs CJ, Hermans WJH, Nyakayiru J, et al. Daily blood flow restriction does not preserve muscle mass and strength during 2 weeks of bed rest. J Physiol. 2024. https://doi.org/10.1113/JP286065. Published online February 27.

[113]

Iversen E, Røstad V, Larmo A. Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. J Sport Health Sci. 2016; 5(1):115-118. https://doi.org/10.1016/j.jshs.2014.12.005.

[114]

Nyakayiru J, Fuchs CJ, Trommelen J, et al. Blood flow restriction only increases myofibrillar protein synthesis with exercise. Med Sci Sports Exerc. 2019; 51(6): 1137-1145. https://doi.org/10.1249/MSS.0000000000001899.

[115]

Doucet BM, Lam A, Griffin L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med. 2012; 85(2):201-215. https://PMID:2273704.

[116]

Luu MJ, Jones KE, Collins DF. Decreased excitability of motor axons contributes substantially to contraction fatigability during neuromuscular electrical stimulation. Appl Physiol Nutr Metabol. 2021; 46(4):346-355. https://doi.org/10.1139/apnm-2020-0366.

[117]

Neyroud D, Dodd D, Gondin J, Maffiuletti NA, Kayser B, Place N. Wide-pulse-highfrequency neuromuscular stimulation of triceps surae induces greater muscle fatigue compared with conventional stimulation. J Appl Physiol (1985). 2014; 116(10):1281-1289. https://doi.org/10.1152/japplphysiol.01015.2013.

[118]

Bergquist AJ, Clair JM, Collins DF. Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: triceps surae. J Appl Physiol (1985). 2011; 110(3):627-637. https://doi.org/10.1152/japplphysiol.01103.2010.

[119]

Vanderthommen M, Duchateau J. Electrical stimulation as a modality to improve performance of the neuromuscular system. Exerc Sport Sci Rev. 2007; 35(4): 180-185. https://doi.org/10.1097/jes.0b013e318156e785.

[120]

Slysz JT, Boston M, King R, Pignanelli C, Power GA, Burr JF. Blood flow restriction combined with electrical stimulation attenuates thigh muscle disuse atrophy. Med Sci Sports Exerc. 2021; 53(5):1033-1040. https://doi.org/10.1249/MSS.0000000000002544.

[121]

Natsume T, Ozaki H, Saito AI, Abe T, Naito H. Effects of electrostimulation with blood flow restriction on muscle size and strength. Med Sci Sports Exerc. 2015; 47(12):2621-2627. https://doi.org/10.1249/MSS.0000000000000722.

[122]

Nakajima T, Koide S, Yasuda T, et al. Muscle hypertrophy following blood flowrestricted, low-force isometric electrical stimulation in rat tibialis anterior: role for muscle hypoxia. J Appl Physiol (1985). 2018; 125(1):134-145. https://doi.org/10.1152/japplphysiol.00972.2017.

[123]

Yoshikawa M, Morifuji T, Matsumoto T, Maeshige N, Tanaka M, Fujino H. Effects of combined treatment with blood flow restriction and low-current electrical stimulation on muscle hypertrophy in rats. J Appl Physiol (1985). 2019; 127(5): 1288-1296. https://doi.org/10.1152/japplphysiol.00070.2019.

[124]

Li N, Yang J, Liao Y. The effect of blood flow restriction training combined with electrical muscle stimulation on neuromuscular adaptation: a randomized controlled trial. Front Physiol. 2023; 14:1182249. https://doi.org/10.3389/fphys.2023.1182249.

[125]

Günter C, Delbeke J, Ortiz-Catalan M. Safety of long-term electrical peripheral nerve stimulation: review of the state of the art. J NeuroEng Rehabil. 2019; 16(1):13. https://doi.org/10.1186/s12984-018-0474-8.

[126]

Patterson SD, Hughes L, Warmington S, et al. Blood flow restriction exercise: considerations of methodology, application, and safety. Front Physiol. 2019; 10:533. https://doi.org/10.3389/fphys.2019.00533.

[127]

Stavres J, Singer TJ, Brochetti A, Kilbane MJ, Brose SW, McDaniel J. The feasibility of blood flow restriction exercise in patients with incomplete spinal cord injury. Pharm Manag PM R. 2018; 10(12):1368-1379. https://doi.org/10.1016/j.pmrj.2018.05.013.

[128]

Jønsson AB, Krogh S, Laursen HS, Aagaard P, Kasch H, Nielsen JF. Safety and efficacy of blood flow restriction exercise in individuals with neurological disorders: a systematic review. Scand J Med Sci Sports. 2024; 34(1):e14561. https://doi.org/10.1111/sms.14561.

[129]

Loenneke JP, Wilson JM, Wilson GJ, Pujol TJ, Bemben MG. Potential safety issues with blood flow restriction training. Scand J Med Sci Sports. 2011; 21(4):510-518. https://doi.org/10.1111/j.1600-0838.2010.01290.x.

[130]

Anderson KD, Rask DMG, Bates TJ, Nuelle JAV. Overall safety and risks associated with blood flow restriction therapy: a literature review. Mil Med. 2022; 187(9-10): 1059-1064. https://doi.org/10.1093/milmed/usac055.

[131]

Lorenz DS, Bailey L, Wilk KE, et al. Blood flow restriction training. J Athl Train. 2021; 56(9):937-944. https://doi.org/10.4085/418-20.

AI Summary AI Mindmap
PDF (1459KB)

405

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/