Up-regulation of Thioredoxin 1 by aerobic exercise training attenuates endoplasmic reticulum stress and cardiomyocyte apoptosis following myocardial infarction

Mengxin Cai, Zujie Xu, Wenyan Bo, Fangnan Wu, Wenpu Qi, Zhenjun Tian

Sports Medicine and Health Science ›› 2020, Vol. 2 ›› Issue (3) : 132-140. DOI: 10.1016/j.smhs.2020.07.001
Original article

Up-regulation of Thioredoxin 1 by aerobic exercise training attenuates endoplasmic reticulum stress and cardiomyocyte apoptosis following myocardial infarction

Author information +
History +

Abstract

Exercise training (ET) has been reported to reduce oxidative stress and endoplasmic reticulum (ER) stress in the heart following myocardial infarction (MI). Thioredoxin 1 (Trx1) plays a protective role in the infarcted heart. However, whether Trx1 regulates ER stress of the infarcted heart and participates in ET-induced cardiac protective effects are still not well known. In this work, H9c2 cells were treated with hydrogen peroxide (H2O2) and recombinant human Trx1 protein (TXN), meanwhile, adult male C57B6L mice were used to establish the MI model, and subjected to a six-week aerobic exercise training (AET) with or without the injection of Trx1 inhibitor, PX-12. Results showed that H2O2 significantly increased reactive oxygen species (ROS) level and the expression of TXNIP, CHOP and cleaved caspase12, induced cell apoptosis; TXN intervention reduced ROS level and the expression of CHOP and cleaved caspase12, and inhibited cell apoptosis in H2O2-treated H9c2 cells. Furthermore, AET up-regulated endogenous Trx1 protein expression and down-regulated TXNIP expression, restored ROS level and the expression of ER stress-related proteins, inhibited cell apoptosis as well as improved cardiac fibrosis and heart function in mice after MI. PX-12 partly inhibited the AET-induced beneficial effects in the infarcted heart. This study demonstrates that Trx1 attenuates ER stress-induced cell apoptosis, and AET reduces MI-induced ROS overproduction, ER stress and cell apoptosis partly through up-regulating of Trx1 expression in mice with MI.

Keywords

Endoplasmic reticulum stress / Myocardial infarction / Exercise training / Thioredoxin 1 / Oxidative stress

Cite this article

Download citation ▾
Mengxin Cai, Zujie Xu, Wenyan Bo, Fangnan Wu, Wenpu Qi, Zhenjun Tian. Up-regulation of Thioredoxin 1 by aerobic exercise training attenuates endoplasmic reticulum stress and cardiomyocyte apoptosis following myocardial infarction. Sports Medicine and Health Science, 2020, 2(3): 132‒140 https://doi.org/10.1016/j.smhs.2020.07.001

References

[[1]]
T. Ide, H. Tsutsui, S. Hayashidani, et al.. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res, 88 (5) ( 2001), pp. 529-535, DOI: 10.1161/01.res.88.5.529
[[2]]
J.D. Malhotra, R.J. Kaufman. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?. Antioxidants Redox Signal, 9 (12) ( 2007), pp. 2277-2293, DOI: 10.1089/ars.2007.1782
[[3]]
J. Groenendyk, L.B. Agellon, M. Michalak. Coping with endoplasmic reticulum stress in the cardiovascular system. Annu Rev Physiol, 75 ( 2013), pp. 49-67, DOI: 10.1146/annurev-physiol-030212-183707
[[4]]
J. Xu, Q. Zhou, W. Xu, et al.. Endoplasmic reticulum stress and diabetic cardiomyopathy. Exp Diabetes Res, 2012 ( 2012), p. 827971, DOI: 10.1155/2012/827971
[[5]]
K. Zhang. Integration of ER stress, oxidative stress and the inflammatory response in health and disease. Int J Clin Exp Med, 3 (1) ( 2010), pp. 33-40
[[6]]
M.Q. Liu, Z. Chen, L.X. Chen. Endoplasmic reticulum stress: a novel mechanism and therapeutic target for cardiovascular diseases. Acta Pharmacol Sin, 37 (4) ( 2016), pp. 425-443, DOI: 10.1038/aps.2015.145
[[7]]
C. Hetz. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol, 13 (2) ( 2012), pp. 89-102, DOI: 10.1038/nrm3270
[[8]]
M.K. Brown, N. Naidoo.The endoplasmic reticulum stress response in aging and age-related diseases. Front Physiol, 3 ( 2012), p. 263, DOI: 10.3389/fphys.2012.00263
[[9]]
B.M. Adams, M.E. Oster, D.N. Hebert. Protein quality control in the endoplasmic reticulum. Protein J, 38 (3) ( 2019), pp. 317-329, DOI: 10.1007/s10930-019-09831-w
[[10]]
A. Arrieta, E.A. Blackwood, C.C. Glembotski. ER protein quality control and the unfolded protein response in the heart. Curr Top Microbiol Immunol, 414 ( 2018), pp. 193-213, DOI: 10.1007/82_2017_54
[[11]]
T. Minamino, I. Komuro, M. Kitakaze. Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circ Res, 107 (9) ( 2010), pp. 1071-1082, DOI: 10.1161/CIRCRESAHA.110.227819
[[12]]
S. Doroudgar, C.C. Glembotski. New concepts of endoplasmic reticulum function in the heart: programmed to conserve. J Mol Cell Cardiol, 55 ( 2013), pp. 85-91, DOI: 10.1016/j.yjmcc.2012.10.006
[[13]]
M.K. Ahsan, I. Lekli, D. Ray, et al.. Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart. Antioxidants Redox Signal, 11 (11) ( 2009), pp. 2741-2758, DOI: 10.1089/ars.2009.2683
[[14]]
E.M. Hanschmann, J.R. Godoy, C. Berndt, et al.. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxidants Redox Signal, 19 (13) ( 2013), pp. 1539-1605, DOI: 10.1089/ars.2012.4599
[[15]]
M.E. Irwin, N. Rivera-Del Valle, J. Chandra. Redox control of leukemia: from molecular mechanisms to therapeutic opportunities. Antioxidants Redox Signal, 18 (11) ( 2013), pp. 1349-1383, DOI: 10.1089/ars.2011.4258
[[16]]
K. Krapfenbauer, E. Engidawork, N. Cairns, et al.. Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res, 967 (1-2) ( 2003), pp. 152-160, DOI: 10.1016/s0006-8993(02)04243-9
[[17]]
M. Saitoh, H. Nishitoh, M. Fujii, et al.. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J, 17 (9) ( 1998), pp. 2596-2606, DOI: 10.1093/emboj/17.9.2596
[[18]]
H. Schenk, M. Vogt, W. Droge, et al.. Thioredoxin as a potent costimulus of cytokine expression. J Immunol, 156 (2) ( 1996), pp. 765-771
[[19]]
S.M. Samuel, M. Thirunavukkarasu, S.V. Penumathsa, et al.. Thioredoxin-1 gene therapy enhances angiogenic signaling and reduces ventricular remodeling in infarcted myocardium of diabetic rats. Circulation, 121 (10) ( 2010), pp. 1244-1255, DOI: 10.1161/CIRCULATIONAHA.109.872481
[[20]]
N. Nagarajan, S. Oka, J. Sadoshima.Modulation of signaling mechanisms in the heart by thioredoxin 1. Free Radic Biol Med, 109 ( 2017), pp. 125-131, DOI: 10.1016/j.freeradbiomed.2016.12.020
[[21]]
S. Neidhardt, J. Garbade, F. Emrich, et al.. Ischemic cardiomyopathy affects the thioredoxin system in the human myocardium. J Card Fail, 25 (3) ( 2019), pp. 204-212, DOI: 10.1016/j.cardfail.2019.01.017
[[22]]
J.P. Sánchez-Villamil, V. D'Annunzio, P. Finocchietto, et al.. Cardiac-specific overexpression of thioredoxin 1 attenuates mitochondrial and myocardial dysfunction in septic mice. Int J Biochem Cell Biol, 81 (Pt B) ( 2016), pp. 323-334, DOI: 10.1016/j.biocel.2016.08.045
[[23]]
G. Chen, X. Li, M. Huang, et al.. Thioredoxin-1 increases survival in sepsis by inflammatory response through suppressing endoplasmic reticulum stress. Shock, 46 (1) ( 2016), pp. 67-74, DOI: 10.1097/SHK.0000000000000570
[[24]]
X.S. Zeng, J.J. Jia, Y. Kwon, et al.. The role of thioredoxin-1 in suppression of endoplasmic reticulum stress in Parkinson disease. Free Radic Biol Med, 67 ( 2014), pp. 10-18, DOI: 10.1016/j.freeradbiomed.2013.10.013
[[25]]
E. Yoshihara, S. Masaki, Y. Matsuo, et al.. Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases. Front Immunol, 4 ( 2014), p. 514, DOI: 10.3389/fimmu.2013.00514
[[26]]
Q. Zhao, X. Che, H. Zhang, et al.. Thioredoxin-interacting protein links endoplasmic reticulum stress to inflammatory brain injury and apoptosis after subarachnoid haemorrhage. J Neuroinflammation, 14 (1) ( 2017), p. 104, DOI: 10.1186/s12974-017-0878-6
[[27]]
C.K. Katashima, E.R. Ropelle, R.A. Pinho, et al.. Exercise training plays cardioprotection through the oxidative stress reduction in obese rats submitted to myocardial infarction. Int J Cardiol, 157 (3) ( 2012), pp. 422-424, DOI: 10.1016/j.ijcard.2012.03.153
[[28]]
L.H. Bozi, P.R. Jannig, N. Rolim, et al.. Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats. J Cell Mol Med, 20 (11) ( 2016), pp. 2208-2212, DOI: 10.1111/jcmm.12894
[[29]]
J.C. Campos, B.B. Queliconi, P.M. Dourado, et al.. Exercise training restores cardiac protein quality control in heart failure. PloS One, 7 (12) ( 2012), Article e52764, DOI: 10.1371/journal.pone.0052764
[[30]]
Z. Lappalainen, J. Lappalainen, N.K. Oksala, et al.. Diabetes impairs exercise training-associated thioredoxin response and glutathione status in rat brain. J Appl Physiol, 106 (2) ( 2009), pp. 461-467, DOI: 10.1152/japplphysiol.91252.2008. 1985
[[31]]
M.V.V. Kolk, D. Meyberg, T. Deuse, et al.. LAD-ligation: a murine model of myocardial infarction. JoVE (32) ( 2009), p. 1438, DOI: 10.3791/1438
[[32]]
B.F. Jordan, M. Runquist, N. Raghunand, et al.. The thioredoxin-1 inhibitor 1-methylpropyl 2-imidazolyl disulfide (PX-12) decreases vascular permeability in tumor xenografts monitored by dynamic contrast enhanced magnetic resonance imaging. Clin Canc Res, 11 (2 Pt 1) ( 2005), pp. 529-536
[[33]]
R. Qin, N. Murakoshi, D. Xu, et al.. Exercise training reduces ventricular arrhythmias through restoring calcium handling and sympathetic tone in myocardial infarction mice. Phys Rep, 7 (4) ( 2019), Article e13972, DOI: 10.14814/phy2.13972
[[34]]
V. Schefer, M.I. Talan. Oxygen consumption in adult and AGED C57BL/6J mice during acute treadmill exercise of different intensity. Exp Gerontol, 31 (3) ( 1996), pp. 387-392, DOI: 10.1016/0531-5565(95)02032-2
[[35]]
A.G. Lerner, J.P. Upton, P.V. Praveen, et al.. IRE1α induces thioredoxin-interacting protein to activate the NLRP 3 inflammasome and promote programmed cell death during endoplasmic reticulum stress. Cell Metabol, 16 (2) ( 2012), pp. 250-264, DOI: 10.1016/j.cmet.2012.07.007
[[36]]
L. Wang, H. Huang, Y. Fan, et al.. Effects of downregulation of MicroRNA-181a on H2O2-induced H9c2 cell apoptosis via the mitochondrial apoptotic pathway. Oxidative Med Cell Longevity, 2014 ( 2014), p. 960362, DOI: 10.1155/2014/960362
[[37]]
M.A. Awad, S.R. Aldosari, M.R. Abid.Genetic alterations in oxidant and anti-oxidant enzymes in the vascular system. Front Cardiovasc Med, 5 ( 2018), p. 107, DOI: 10.3389/fcvm.2018.00107
[[38]]
H. Li, A. Wan, G. Xu, et al.. Small changes huge impact: the role of thioredoxin 1 in the regulation of apoptosis by S-nitrosylation. Acta Biochim Biophys Sin, 45 (3) ( 2013), pp. 153-161, DOI: 10.1093/abbs/gms103
[[39]]
B. Niemann, L. Li, D. Siegler, et al.. CTRP 9 mediates protective effects in cardiomyocytes via ampk- and adiponectin receptor-mediated induction of anti-oxidant response. Cells, 9 (5) ( 2020), p. E1229, DOI: 10.3390/cells9051229
[[40]]
S.I. Oka, A. Chin, J.Y. Park, et al.. Thioredoxin-1 maintains mitochondrial function via mTOR signaling in the heart. Cardiovasc Res ( 2019), DOI: 10.1093/cvr/cvz251. cvz251
[[41]]
X. Chen, X. Guo, Q. Ge, et al.. ER stress activates the NLRP 3 inflammasome: a novel mechanism of atherosclerosis. Oxidative Med Cell Longevity, 2019 ( 2019), p. 3462530, DOI: 10.1155/2019/3462530
[[42]]
C. Fiuza-Luces, A. Santos-Lozano, M. Joyner, et al.. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol, 15 (12) ( 2018), pp. 731-743, DOI: 10.1038/s41569-018-0065-1
[[43]]
G. Bourdier, P. Flore, H. Sanchez, et al.. High-intensity training reduces intermittent hypoxia-induced ER stress and myocardial infarct size. Am J Physiol Heart Circ Physiol, 310 (2) ( 2016), pp. H279-H289, DOI: 10.1152/ajpheart.00448.2015
[[44]]
G. da Luz, M.J. Frederico, S. da Silva, et al.. Endurance exercise training ameliorates insulin resistance and reticulum stress in adipose and hepatic tissue in obese rats. Eur J Appl Physiol, 111 (9) ( 2011), pp. 2015-2023, DOI: 10.1007/s00421-010-1802-2
[[45]]
E.B. Kang, I.S. Kwon, J.H. Koo, et al.. Treadmill exercise represses neuronal cell death and inflammation during Aβ-induced ER stress by regulating unfolded protein response in aged presenilin 2 mutant mice. Apoptosis, 18 (11) ( 2013), pp. 1332-1347, DOI: 10.1007/s10495-013-0884-9
[[46]]
W.S. Cheang, W.T. Wong, L. Zhao, et al.. PPARδ is required for exercise to attenuate endoplasmic reticulum stress and endothelial dysfunction in diabetic mice. Diabetes, 66 (2) ( 2017), pp. 519-528, DOI: 10.2337/db15-1657
[[47]]
A. Khadir, S. Kavalakatt, J. Abubaker, et al.. Physical exercise alleviates ER stress in obese humans through reduction in the expression and release of GRP78 chaperone. Metabolism, 65 (9) ( 2016), pp. 1409-1420, DOI: 10.1016/j.metabol.2016.06.004
[[48]]
W. Chengji, F. Xianjin. Exercise protects against diabetic cardiomyopathy by the inhibition of the endoplasmic reticulum stress pathway in rats. J Cell Physiol, 234 (2) ( 2019), pp. 1682-1688, DOI: 10.1002/jcp.27038
[[49]]
J.S. Kang. Exercise copes with prolonged stress-induced impairment of spatial memory performance by endoplasmic reticulum stress. J Exerc Nutr Biochem, 19 (3) ( 2015), pp. 191-197, DOI: 10.5717/jenb.2015.15080705
[[50]]
Z. Murlasits, Y. Lee, S.K. Powers. Short-term exercise does not increase ER stress protein expression in cardiac muscle. Med Sci Sports Exerc, 39 (9) ( 2007), pp. 1522-1528, DOI: 10.1249/mss.0b013e3180cc25c7
[[51]]
M.X. Cai, X.C. Shi, T. Chen, et al.. Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat myocardial infarction model. Life Sci, 149 ( 2016), pp. 1-9, DOI: 10.1016/j.lfs.2016.02.055
[[52]]
A. Mitsui, J. Hamuro, H. Nakamura, et al.. Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span. Antioxidants Redox Signal, 4 (4) ( 2002), pp. 693-696, DOI: 10.1089/15230860260220201
[[53]]
R.S. Adluri, M. Thirunavukkarasu, L. Zhan, et al.. Thioredoxin 1 enhances neovascularization and reduces ventricular remodeling during chronic myocardial infarction: a study using thioredoxin 1 transgenic mice. J Mol Cell Cardiol, 50 (1) ( 2011), pp. 239-247, DOI: 10.1016/j.yjmcc.2010.11.002
[[54]]
M. Yamamoto, G. Yang, C. Hong, et al.. Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J Clin Invest, 112 (9) ( 2003), pp. 1395-1406, DOI: 10.1172/JCI17700
[[55]]
Y. Wande, L. Jie, Z. Aikai, et al.. Berberine alleviates pulmonary hypertension through Trx1 and β-catenin signaling pathways in pulmonary artery smooth muscle cells. Exp Cell Res, 390 (1) ( 2020), p. 111910, DOI: 10.1016/j.yexcr.2020.111910
[[56]]
W.H. Park. Upregulation of thioredoxin and its reductase attenuates arsenic trioxide- induced growth suppression in human pulmonary artery smooth muscle cells by reducing oxidative stress. Oncol Rep, 43 (1) ( 2020), pp. 358-367, DOI: 10.3892/or.2019.7414

This research was supported by National Natural Science Foundation of China (Grant No. 31701039, 31671240) and the Fundamental Research Funds for the Central Universities, Shaanxi Normal University (Grant Number GK201803096).

Accesses

Citations

Detail

Sections
Recommended

/