A density functional theory study of tyrosine-proton mediated transport in Ag-filamentary nanodevices

Dan Berco

Smart Molecules ›› 2025, Vol. 3 ›› Issue (3) : e70019

PDF
Smart Molecules ›› 2025, Vol. 3 ›› Issue (3) : e70019 DOI: 10.1002/smo2.70019
RESEARCH ARTICLE

A density functional theory study of tyrosine-proton mediated transport in Ag-filamentary nanodevices

Author information +
History +
PDF

Abstract

The development of electronic circuits designed to emulate the functionality of biological neural networks has increased significantly in recent years. Specifically, memristor-based neuromorphic operation has been demonstrated using various material combinations. One class of devices replicates the ion-concentration-gradient buildup that precedes neurotransmitter release in biological synapses. Some of these devices incorporate amino-acid-rich solutions as an active layer. This work presents a density functional theory study of such a device. The interaction between an Ag-filamentary memristor and different Hydrogen concentrations in a tyrosine-rich environment was evaluated. Two mutually exclusive structures were studied, and the resulting source-to-drain currents were compared with experimental observations. One structure was based on Tyrosine-H blocks linked to Ag atoms as a charge conduction path, while the other placed these blocks in parallel with Ag partial filaments between the source and drain. The results indicate that the second aligns with experiments and supports the hypothesis that tyrosine can act as an enabler for proton-mediated charge transport. Furthermore, the insights into the electronic transport properties of specific molecules can provide a theoretical background for designing advanced Hydrogen sensors and amino acid detectors.

Keywords

Ag-filamentary memristors / amino-acid devices / Hydrogen sensors / neuromorphic computing / proton-mediated charge transport / tyrosine-based nanostructures

Cite this article

Download citation ▾
Dan Berco. A density functional theory study of tyrosine-proton mediated transport in Ag-filamentary nanodevices. Smart Molecules, 2025, 3(3): e70019 DOI:10.1002/smo2.70019

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. Shibata, O. Tadahiro, in International Electron Devices Meeting1991, pp. 919–922.

[2]

B. W. Lee, B. J. Sheu, H. Yang, IEEE Trans. Circ. Syst. 1991, 38, 654.

[3]

R. Ovshinsky, Phys. Rev. Lett. 1968, 21, 1450.

[4]

L. O. Chua, IEEE Trans. Circ. Theor. 1971, 18, 507.

[5]

D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, Nature 2008, 453, 80.

[6]

D. Berco, Y. Zhou, S. R. Gollu, P. S. Kalaga, A. Kole, M. Hassan, D. S. Ang, ACS Nano 2018, 12, 5946.

[7]

D. Berco, D. S. Ang, J. Vac. Sci. Technol. B 2019, 37, 061806.

[8]

F. Rosenblatt, The Perceptron-A Perceiving and Recognizing Automaton, Cornell Aeronautical Laboratory 1957.

[9]

F. Rosenblatt, Psychol. Rev. 1958, 65, 386. https://doi.org/10.1037/h0042519

[10]

G. P. Economou, E. P. Mariatos, N. M. Economopoulos, D. Lymberopoulos, C. E. Goutis, in Proceedings of the Fourth International Conference on Microelectronics for Neural Networks and Fuzzy Systems1994, pp. 287–293.

[11]

S. L. Bade, B. L. Hutchings, in Proceedings of IEEE Workshop on FPGA's for Custom Computing Machines1994, pp. 189–198.

[12]

D. Anguita, A. Boni, S. Ridella, IEEE Trans. Neural Netw. 2003, 14, 993.

[13]

H. Ng, K. Lam, IEEE Trans. Neural Netw. 2003, 14, 1413.

[14]

Y. Maeda, M. Wakamura, IEEE Trans. Neural Netw. 2005, 16, 1664.

[15]

S. Tam, B. Gupta, H. Castro, M. Holler, in Proc. IEEE Int. Conf. Syst., Man Cybern1990, pp. 701–703.

[16]

H. McCartor, VLSI Artif. Intell. Neural Netw. 1991, 357.

[17]

D. Berco, D. S. Ang, Adv. Intell. Syst. 2019, 1, 1900003.

[18]

D. Berco, D. S. Ang, H. Z. Zhang, Adv. Intell. Syst. 2020, 2, 1900115.

[19]

D. Berco, D. S. Ang, P. S. Kalaga, Adv. Intell. Syst. 2020, 2, 2000079.

[20]

D. Berco, D. S. Ang, Adv. Intell. Syst. 2021, 3, 2100025.

[21]

D. Berco, C. H. Chiu, D. S. Ang, Adv. Intell. Syst. 2022, 4, 2200066.

[22]

W. C. Abraham, M. F. Bear, Trends Neurosciences 1996, 19, 126.

[23]

T. J. Meyer, M. H. Huynh, H. H. Thorp, Angew. Chem. Int. Ed. 2007, 46, 5284.

[24]

A. A. Beg, G. G. Ernstrom, P. Nix, M. W. Davis, E. M. Jorgensen, Cell 2008, 132, 149.

[25]

M. Chesler, Physiol. Rev. 2003, 83, 1183.

[26]

M. K. Song, S. D. Namgung, D. Choi, H. Kim, H. Seo, M. Ju, Y. H. Lee, T. Sung, Y. S. Lee, K. T. Nam, J. Y. Kwon, Nat. Commun. 2020, 11, 5896.

[27]

H. S. Jang, J. H. Lee, Y. S. Park, Y. O. Kim, J. Park, T. Y. Yang, K. Jin, J. Lee, S. Park, J. M. You, K. W. Jeong, A. Shin, I. S. Oh, M. K. Kwon, H. H. Cho, H. N. Han, Y. H. Chang, S. R. Paik, K. T. Nam, Nat. Commun. 2014, 5, 3665.

[28]

M. K. Song, S. D. Namgung, Y. W. Song, T. Sung, W. Ji, Y. S. Lee, K. T. Nam, J. Y. Kwon, ACS Appl. Electron. Mater. 2021, 3, 3372.

[29]

M. K. Song, Y. W. Song, T. Sung, S. D. Namgung, J. H. Yoon, Y. S. Lee, K. T. Nam, J. Y. Kwon, RSC Adv. 2021, 11, 39619.

[30]

M. K. Song, S. D. Namgung, H. Lee, J. H. Yoon, Y. W. Song, K. H. Cho, Y. S. Lee, J. S. Lee, K. T. Nam, J. Y. Kwon, Nano Res. 2023, 16, 858.

[31]

M. K. Song, S. D. Namgung, J. M. Suh, J. H. Yoon, K. T. Nam, J. Y. Kwon, ACS Mater. Lett. 2023, 6, 275.

[32]

J. H. Yoon, M. K. Song, W. Ham, K. J. Park, J. M Park, S. D. Namgung, J. Y. Kwon, Adv. Funct. Mater. 2025, 35, 2415222.

[33]

E. Engel, Density Functional Theory, Springer-Verlag, Berlin2011, ISBN 978-3-642-14089-1.

[34]

P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 2003, 103, 1793.

[35]

S. Froyen, W. A. Harrison, Phys. Rev. B 1979, 20, 2420.

[36]

J. W. Mintmire, B. I. Dunlap, Phys. Rev. 1982, 25, 88.

[37]

Synopsys QuantumATK ver. W-2023.09. https://www.synopsys.com/quantumatk

[38]

M. Pourfath, The Non-equilibrium Green's Function Method for Nanoscale Device Simulation, Vol. 3, Springer, Vienna2014, ISBN: 978-3709148389.

[39]

S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov, U. G. Vej-Hansen, M. E. Lee, S. T. Chill, F. Rasmussen, G. Penazzi, F. Corsetti, A. Ojanperä, K. Jensen, M. L. N. Palsgaard, U. Martinez, A. Blom, M. Brandbyge, K. Stokbro, J. Phys. Condens. Matter 2019, 32, 015901.

[40]

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comp. Chem. 2004, 25, 1605.

[41]

UCSF Chimera version 1.16 (https://www.cgl.ucsf.edu/chimera/).

RIGHTS & PERMISSIONS

2025 The Author(s). Smart Molecules published by John Wiley & Sons Australia, Ltd on behalf of Dalian University of Technology.

AI Summary AI Mindmap
PDF

24

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/