Synergistic non-covalent interactions enable high-strength fluorescent supramolecular materials with water-assisted self-healing and remolding properties

Xiaoye Zhang , Haohui Wang , Pan Li , Hualin Tang , Tao Chen , Wei Lu

Smart Molecules ›› 2025, Vol. 3 ›› Issue (3) : e70017

PDF
Smart Molecules ›› 2025, Vol. 3 ›› Issue (3) : e70017 DOI: 10.1002/smo2.70017
RESEARCH ARTICLE

Synergistic non-covalent interactions enable high-strength fluorescent supramolecular materials with water-assisted self-healing and remolding properties

Author information +
History +
PDF

Abstract

Supramolecular materials, characterized by dynamic reversibility and responsiveness to environmental stimuli, have found widespread applications in numerous fields. Unlike traditional materials, supramolecular materials that rely on non-covalent interactions can allow spontaneous reorganization and self-healing at room temperature. However, these materials typically exhibit low strength due to the weak bonding energies of non-covalent interactions. This study presents the development of a high-strength self-healing supramolecular material that combines multiple interactions including ionic bonding, hydrogen bonding, and coordination bonding. The material, formed by the aggregation of the negatively charged picolinate-grafted copolymer (PCM) with positively charged hyperbranched molecules (HP), is further enhanced by Eu3+ ion complexation. The resulting film exhibits a high modulus of 427 MPa, tensile strength of 10.5 MPa, and toughness of 14.7 MJ m−3. Meanwhile, the non-covalent interaction of this supramolecular material endows it with a self-healing efficiency of 92% within 24 h at room temperature, as well as multiple remolding properties. The incorporation of lanthanide ions also imparts tunable fluorescence. This study not only provides insights into the development of high-strength self-healing materials but also offers new possibilities for the functionalization of supramolecular materials.

Keywords

fluorescence / high strength / self-healing / supramolecular materials / synergistic interactions

Cite this article

Download citation ▾
Xiaoye Zhang, Haohui Wang, Pan Li, Hualin Tang, Tao Chen, Wei Lu. Synergistic non-covalent interactions enable high-strength fluorescent supramolecular materials with water-assisted self-healing and remolding properties. Smart Molecules, 2025, 3(3): e70017 DOI:10.1002/smo2.70017

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Wu, L. Han, B. Yan, H. Zeng, Supramol. Mater. 2023, 2, 100045.

[2]

G. Thangavel, M. W. M. Tan, P. S. Lee, Nano Convergence 2019, 6, 29.

[3]

X. Wang, T. Liu, F. Sun, J. Zhang, B. Yao, J. Xu, J. Fu, Smart Mol. 2024, 2, e20240008.

[4]

S. An, X. Zhang, M. Si, H. Shi, P. Wei, J. Shen, W. Lu, T. Chen, Chem. Eng. J. 2023, 463, 142307.

[5]

M. J. Webber, E. A. Appel, E. W. Meijer, R. Langer, Nat. Mater. 2016, 15, 13.

[6]

S. Li, X. Zhou, Y. Dong, J. Li, Macromol. Rapid Commun. 2020, 41, e2000444.

[7]

X. Le, W. Lu, J. Zheng, D. Tong, N. Zhao, C. Ma, H. Xiao, J. Zhang, Y. Huang, T. Chen, Chem. Sci. 2016, 7, 6715.

[8]

B. Li, P. F. Cao, T. Saito, A. P. Sokolov, Chem. Rev. 2023, 123, 701.

[9]

S. W. Zhou, C. Yu, M. Chen, C. Y. Shi, R. Gu, D. H. Qu, Smart Mol. 2023, 1, e20220009.

[10]

Y. Pan, S. Gao, F. Sun, H. Yang, P. F. Cao, Chemistry 2019, 25, 10976.

[11]

C.-J. Fan, Z.-C. Huang, B. Li, W.-X. Xiao, E. Zheng, K.-K. Yang, Y.-Z. Wang, Sci. China Mater. 2019, 62, 1188.

[12]

C. H. Li, J. L. Zuo, Adv. Mater. 2020, 32, e1903762.

[13]

T. Chen, Z. Jin, Y. Liu, X. Zhang, H. Wu, M. Li, W. Feng, Q. Zhang, C. Wang, Angew. Chem., Int. Ed. Engl. 2022, 61, e202207645.

[14]

C. Ueda, J. Park, K. Hirose, S. Konishi, Y. Ikemoto, M. Osaki, H. Yamaguchi, A. Harada, M. Tanaka, G. Watanabe, Y. Takashima, Supramol. Mater. 2022, 1, 100001.

[15]

H. Wang, P. Li, J. Ren, Z. Jiang, J. Zhou, K. Xu, Z. Ding, S. Wei, J. Lin, M. Si, W. Lu, T. Chen, P. Wei, Mater. Today Chem. 2024, 42, 102365.

[16]

B. Xianyu, H. Xu, Supramol. Mater. 2024, 3, 100070.

[17]

Y. Deng, Q. Zhang, B. L. Feringa, H. Tian, D. H. Qu, Angew. Chem., Int. Ed. Engl. 2020, 59, 5278.

[18]

Y. Wang, S. Sun, P. Wu, Adv. Funct. Mater. 2021, 31, 2101494.

[19]

J. Ren, W. Xie, W. Lu, X. Zhang, W. Wang, T. Chen, Macromol. Rapid Commun. 2025, 46, e2500072.

[20]

M. Wei, W.-H. Feng, C. Yu, Z.-Y. Jiang, G.-Q. Yin, W. Lu, T. Chen, Chin. J. Polym. Sci. 2024, 42, 1595.

[21]

X. Q. Feng, G. Z. Zhang, Q. M. Bai, H. Y. Jiang, B. Xu, H. J. Li, Macromol. Mater. Eng. 2015, 301, 125.

[22]

X. Feng, G. Zhang, B. Xu, H. Jiang, Q. Bai, H. Li, RSC Adv. 2015, 5, 70000.

[23]

Y. Jian, B. Wu, X. Yang, Y. Peng, D. Zhang, Y. Yang, H. Qiu, H. Lu, J. Zhang, T. Chen, Supramol. Mater. 2022, 1, 100002.

[24]

D. Liu, J. Zhou, L. Li, M. Qi, W. Luo, G. Yin, T. Chen, Supramol. Mater. 2025, 4, 100105.

[25]

Z. H. Liao, F. Wang, Smart Mol. 2024, 2, e20240036.

[26]

X. Zhang, Y. Zhou, M. Han, Y. Zheng, J. Liu, Y. Bao, G. Shan, C. Yu, P. Pan, Chem. Bio Eng. 2024, 1, 790.

[27]

Y.-L. Luo, W.-T. Gao, Z.-Y. Luo, C.-H. Li, Mater. Chem. Front. 2024, 8, 1767.

[28]

Y. Wang, Z. Cao, T. Liu, L. Wang, Z. Fu, Y. Li, J. Xu, J. Fu, Mater. Chem. Front. 2025, 9, 1101.

[29]

Y. Song, Y. Liu, T. Qi, G. L. Li, Angew. Chem., Int. Ed. Engl. 2018, 57, 13838.

[30]

C. Liang, V. Dudko, O. Khoruzhenko, X. Hong, Z. P. Lv, I. Tunn, M. Umer, J. V. I. Timonen, M. B. Linder, J. Breu, O. Ikkala, H. Zhang, Nat. Mater. 2025, 24, 599.

[31]

T. Guan, X. Wang, Y.-L. Zhu, L. Qian, Z. Lu, Y. Men, J. Li, Y. Wang, J. Sun, Macromolecules 2022, 55, 5816.

[32]

H. Wang, H. Liu, Z. Cao, W. Li, X. Huang, Y. Zhu, F. Ling, H. Xu, Q. Wu, Y. Peng, B. Yang, R. Zhang, O. Kessler, G. Huang, J. Wu, Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 11299.

[33]

W. Li, H. Wu, Y. Huang, Y. Yao, Y. Hou, Q. Teng, M. Cai, J. Wu, Angew. Chem., Int. Ed. Engl. 2024, 63, e202408250.

[34]

W. Li, H. Zhang, W. Lu, Y. Zhang, T. Zheng, G. Yang, T. Chen, Adv. Opt. Mater. 2023, 11, 2202738.

[35]

Z. Guo, X. Lu, X. Wang, X. Li, J. Li, J. Sun, Adv. Mater. 2023, 35, e2300286.

[36]

D. Wang, Z. Wang, S. Ren, J. Xu, C. Wang, P. Hu, J. Fu, Mater. Horiz. 2021, 8, 2238.

[37]

T. Long, Y. Li, X. Fang, J. Sun, Adv. Funct. Mater. 2018, 28, 1804416.

[38]

Z. Jiang, B. Diggle, I. C. G. Shackleford, L. A. Connal, Adv. Mater. 2019, 31, e1904956.

[39]

Z. Jiang, M. L. Tan, M. Taheri, Q. Yan, T. Tsuzuki, M. G. Gardiner, B. Diggle, L. A. Connal, Angew. Chem., Int. Ed. Engl. 2020, 59, 7049.

[40]

R. Fu, Y. Guan, C. Xiao, L. Fan, Z. Wang, Y. Li, P. Yu, L. Tu, G. Tan, J. Zhai, L. Zhou, C. Ning, Small Methods 2022, 6, e2101513.

[41]

S. Wang, D. Fu, X. Wang, W. Pu, A. Martone, X. Lu, M. Lavorgna, Z. Wang, E. Amendola, H. Xia, J. Mater. Chem. A 2021, 9, 4055.

[42]

J. C. Lai, L. Li, D. P. Wang, M. H. Zhang, S. R. Mo, X. Wang, K. Y. Zeng, C. H. Li, Q. Jiang, X. Z. You, J. L. Zuo, Nat. Commun. 2018, 9, 2725.

RIGHTS & PERMISSIONS

2025 The Author(s). Smart Molecules published by John Wiley & Sons Australia, Ltd on behalf of Dalian University of Technology.

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/