Insights into the mechanism of reversible blood-brain barrier opening via second near-infrared region excited gold nanorods photothermal effect: Regulation of the tight junction protein occludin

Kaili Liang , Li Yang , Bo Liu , Xinying Wang , Liyan Wang , Jiawei Kang , Zhang Ding , Wei Wang , Qing Wang

Smart Molecules ›› 2025, Vol. 3 ›› Issue (3) : e70016

PDF
Smart Molecules ›› 2025, Vol. 3 ›› Issue (3) : e70016 DOI: 10.1002/smo2.70016
RESEARCH ARTICLE

Insights into the mechanism of reversible blood-brain barrier opening via second near-infrared region excited gold nanorods photothermal effect: Regulation of the tight junction protein occludin

Author information +
History +
PDF

Abstract

This study constructed an in vitro blood-brain barrier (BBB) transwell model to investigate the regulatory effects and mechanisms of the photothermal effects of gold nanorods (AuNRs) excited by the second near-infrared region (NIR-II) on BBB permeability. The experimental results showed that the photothermal effects of NIR-II + AuNRs significantly decreased trans-epithelial electrical resistance (TEER) and increased the permeability of fluorescein isothiocyanate (FITC)-dextran, indicating that it can effectively open the BBB. This effect was reversible, and the TEER and FITC permeability returned to baseline levels within 24 h after treatment. Mechanistic studies revealed that BBB opening did not rely on apoptosis, cytoskeletal disruption, mitochondrial dysfunction, or inflammation. The opening of the BBB was closely associated with a temporary decrease in the expression and conformational change of the tight junction protein occludin due to the photothermal effect. Molecular simulations and docking analysis revealed that the heat shock protein HSP70 could bind to the conformationally altered occludin, supporting the regulatory role of photothermal effects on tight junction proteins. In summary, NIR-II + AuNRs achieved safe and reversible opening of the BBB by regulating the conformation and expression of tight junction proteins, providing a deeper insight for further research on BBB and the treatment of neurological diseases.

Keywords

blood-brain barrier / occludin / protein conformation / tight junction protein

Cite this article

Download citation ▾
Kaili Liang, Li Yang, Bo Liu, Xinying Wang, Liyan Wang, Jiawei Kang, Zhang Ding, Wei Wang, Qing Wang. Insights into the mechanism of reversible blood-brain barrier opening via second near-infrared region excited gold nanorods photothermal effect: Regulation of the tight junction protein occludin. Smart Molecules, 2025, 3(3): e70016 DOI:10.1002/smo2.70016

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Daneman, A. Prat, Cold Spring Harb Perspect. Biol. 2015, 7, a20412.

[2]

N. J. Abbott, A. A. Patabendige, D. E. Dolman, S. R. Yusof, D. J. Begley, Neurobiol. Dis. 2010, 37, 13.

[3]

B. Obermeier, R. Daneman, R. M. Ransohoff, Nat. Med. 2013, 19, 1584.

[4]

L. Yan, C. W. Dwiggins, R. A. Moriarty, J. W. Jung, U. Gupta, K. D. Brandon, K. M. Stroka, Acta Biomater. 2023, 167, 109.

[5]

A. Pivoriunas, A. Verkhratsky, Neurochem. Res. 2021, 46, 2538.

[6]

S. Alkabie, J. Basivireddy, L. Zhou, J. Roskams, P. Rieckmann, J. A. Quandt, J. Neuroinflammation 2016, 13, 225.

[7]

A. Alahmari, Neural Plast. 2021, 2021, 6564585.

[8]

A. T. Haine, T. Niidome, Chem. Pharm. Bull. (Tokyo) 2017, 65, 625.

[9]

A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, C. J. Murphy, Adv. Drug Deliv. Rev. 2012, 64, 190.

[10]

W. Chang, J. Wang, J. Zhang, Q. Ling, Y. Li, J. Wang, Pharmaceutics 2022, 14, 1110.

[11]

A. Jahangiri-Manesh, M. Mousazadeh, S. Taji, A. Bahmani, A. Zarepour, A. Zarrabi, E. Sharifi, M. Azimzadeh, Pharmaceutics 2022, 14, 664.

[12]

K. Liang, L. Yang, J. Kang, B. Liu, D. Zhang, L. Wang, W. Wang, Q. Wang, Asian J. Pharm. Sci. 2024, 19, 100963.

[13]

A. C. Voirin, N. Perek, F. Roche, Brain Res. 2020, 1730, 146647.

[14]

J. Sun, W. Ou, D. Han, A. Paganini-Hill, M. J. Fisher, R. K. Sumbria, PLoS One 2022, 17, e268860.

[15]

B. Srinivasan, A. R. Kolli, M. B. Esch, H. E. Abaci, M. L. Shuler, J. J. Hickman, J. Lab. Autom. 2015, 20, 107.

[16]

J. Huang, Y. B. Li, C. Charlebois, T. Nguyen, Z. Liu, D. Bloemberg, A. Zafer, E. Baumann, C. Sodja, S. Leclerc, G. Fewell, Q. Liu, B. Prabhakarpandian, S. McComb, D. B. Stanimirovic, A. Jezierski, Fluids Barriers CNS 2022, 19, 38.

[17]

D. Dubayle, A. Vanden-Bossche, T. Peixoto, J. L. Morel, Cells 2023, 12, 734.

[18]

F. Senturk, S. Cakmak, I. C. Kocum, M. Gumusderelioglu, G. G. Ozturk, Biochem. Biophys. Res. Commun. 2022, 597, 91.

[19]

Z. Darzynkiewicz, E. Bedner, P. Smolewski, Semin. Hematol. 2001, 38, 179.

[20]

R. Wang, M. He, Z. Zhang, T. Qiu, Y. Xi, X. Zeng, J. Fan, W. Sun, X. Peng, Smart Mol. 2024, 2, e20240010.

[21]

K. Huang, W. Yang, M. Shi, S. Wang, Y. Li, Z. Xu, Int. J. Mol. Sci. 2024, 25, 6797.

[22]

J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke, D. Jenne, T. A. Holak, Z. Werb, M. Sixt, R. Wedlich-Soldner, Nat. Methods 2008, 5, 605.

[23]

K. A. Kim, D. Kim, J. H. Kim, Y. J. Shin, E. S. Kim, M. Akram, E. H. Kim, A. Majid, S. H. Baek, O. N. Bae, Fluids Barriers CNS 2020, 17, 21.

[24]

I. Kimura, S. Dohgu, F. Takata, J. Matsumoto, Y. Kawahara, M. Nishihira, S. Sakada, T. Saisho, A. Yamauchi, Y. Kataoka, Neurosci. Lett. 2019, 694, 9.

[25]

S. Tsukita, M. Furuse, M. Itoh, Nat. Rev. Mol. Cell Biol. 2001, 2, 285.

[26]

Y. E. Kim, M. S. Hipp, A. Bracher, M. Hayer-Hartl, F. U. Hartl, Annu. Rev. Biochem. 2013, 82, 323.

[27]

M. P. Mayer, B. Bukau, Cell. Mol. Life Sci. 2005, 62, 670.

[28]

R. I. Morimoto, Science 1993, 259, 1409.

[29]

S. K. Wu, C. F. Chiang, Y. H. Hsu, T. H. Lin, H. C. Liou, W. M. Fu, W. L. Lin, Int. J. Nanomedicine 2014, 9, 4485.

[30]

M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, P. J. Hoopes, Int. J. Hyperthermia 2003, 19, 267.

[31]

A. J. de Oliveira, V. G. Contessoto, A. Hassan, S. Byju, A. Wang, Y. Wang, E. Dodero-Rojas, U. Mohanty, J. K. Noel, J. N. Onuchic, P. C. Whitford, Protein Sci. 2022, 31, 158.

[32]

K. Goossens, H. De Winter, J. Chem. Inf. Model. 2018, 58, 2193.

[33]

O. Trott, A. J. Olson, J. Comput. Chem. 2010, 31, 455.

[34]

R. Ji, M. E. Karakatsani, M. Burgess, M. Smith, M. F. Murillo, E. E. Konofagou, J. Control. Release 2021, 337, 458.

[35]

Y. Meng, C. B. Pople, H. Lea-Banks, A. Abrahao, B. Davidson, S. Suppiah, L. M. Vecchio, N. Samuel, F. Mahmud, K. Hynynen, C. Hamani, N. Lipsman, J. Control. Release 2019, 309, 25.

[36]

X. Huang, B. Hussain, J. Chang, CNS Neurosci. Ther. 2021, 27, 36.

[37]

D. Xue, Y. Cheng, T. Pang, Y. Kuai, Y. An, K. Wu, Y. Li, M. Lai, B. Wang, S. Wang, J. Hazard Mater. 2023, 459, 132013.

[38]

C. Wang, H. Shang, S. Zhang, X. Wang, D. Liu, M. Shen, N. Li, Y. Jiang, K. Wei, R. Zhu, Chem. Biol. Interact. 2023, 379, 110523.

[39]

M. M. Almutairi, C. Gong, Y. G. Xu, Y. Chang, H. Shi, Cell. Mol. Life Sci. 2016, 73, 57.

[40]

F. J. Irudayanathan, J. P. Trasatti, P. Karande, S. Nangia, J. Phys. Chem. B 2016, 120, 77.

[41]

G. Chakafana, T. Zininga, A. Shonhai, Biomolecules 2019, 9, 543.

[42]

W. Voos, K. Rottgers, Biochim. Biophys. Acta 2002, 1592, 51.

[43]

V. Su, K. Cochrane, A. F. Lau, J. Membr. Biol. 2012, 245, 389.

[44]

M. P. Liebl, T. Hoppe, Am. J. Physiol. Cell Physiol 2016, 311, C166.

[45]

W. Zhao, L. Pferdehirt, L. Segatori, ACS Synth. Biol. 2018, 7, 540.

[46]

C. Canto, J. Cell Biol. 2017, 216, 551.

[47]

G. Tian, C. Hu, Y. Yun, W. Yang, W. Dubiel, Y. Cheng, D. A. Wolf, EMBO J. 2021, 40, e106183.

RIGHTS & PERMISSIONS

2025 The Author(s). Smart Molecules published by John Wiley & Sons Australia, Ltd on behalf of Dalian University of Technology.

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/