Circularly polarized luminescence from supramolecular assemblies based on small molecules

Xinyu Liu , Xiaoyan Wang , Xiaotao Zhang , Liqiang Li , Yu Wang , Wenping Hu

Smart Molecules ›› 2025, Vol. 3 ›› Issue (3) : e20240061

PDF
Smart Molecules ›› 2025, Vol. 3 ›› Issue (3) : e20240061 DOI: 10.1002/smo.20240061
REVIEW ARTICLE

Circularly polarized luminescence from supramolecular assemblies based on small molecules

Author information +
History +
PDF

Abstract

Circularly polarized luminescence (CPL)-active materials have a wide range of technological applications. Traditionally, creating CPL-active materials relies on the use of chiral luminophores. In contrast, supramolecular assembly introduces an innovative and promising strategy for developing CPL-active materials not only from chiral luminophores but also from achiral species. This approach significantly enriches the diversity of CPL-active materials. It also offers an effective means to optimize the performance of CPL-active materials, such as enhancing the asymmetry factor |glum|. Compared to polymers, the assembly of small molecules is generally easier to control. This review systematically summarizes the recent progress and developments in CPL from small-molecule assemblies, particularly focusing on differences, merits, and demerits of three typical assembly modes. The aim is to provide valuable insights for the future development of chiroptical materials.

Keywords

chiral supramolecular assemblies / chiroptical materials / circularly polarized luminescence / organic small molecules / supramolecular chirality

Cite this article

Download citation ▾
Xinyu Liu, Xiaoyan Wang, Xiaotao Zhang, Liqiang Li, Yu Wang, Wenping Hu. Circularly polarized luminescence from supramolecular assemblies based on small molecules. Smart Molecules, 2025, 3(3): e20240061 DOI:10.1002/smo.20240061

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Zhang, G. Li, Q. Guo, S. Jin, Z. Li, Y. Zhou, M. Zhu, S. Zhao, T. Zhuang, Z. Tong, Y. Wang, S.-H. Yu, Sci. Adv. 2023, 9, eadi9944.

[2]

H. Maeda, Y. Bando, K. Shimomura, I. Yamada, M. Naito, K. Nobusawa, H. Tsumatori, T. Kawai, J. Am. Chem. Soc. 2011, 133, 9266.

[3]

K. Takaishi, M. Yasui, T. Ema, J. Am. Chem. Soc. 2018, 140, 5334.

[4]

Y. Yang, R. C. Da Costa, M. J. Fuchter, A. J. Campbell, Nat. Photon. 2013, 7, 634.

[5]

J. Kim, J. Lee, W. Y. Kim, H. Kim, S. Lee, H. C. Lee, Y. S. Lee, M. Seo, S. Y. Kim, Nat. Commun. 2015, 6, 6959.

[6]

C. Meinert, S. V. Hoffmann, P. Cassam-Chenaï, A. C. Evans, C. Giri, L. Nahon, U. J. Meierhenrich, Angew. Chem. Int. Ed. 2014, 126, 214.

[7]

D. E. McCoy, T. Feo, T. A. Harvey, R. O. Prum, Nat. Commun. 2018, 9, 1.

[8]

J. Zhang, W. Feng, H. Zhang, Z. Wang, H. A. Calcaterra, B. Yeom, P. A. Hu, N. A. Kotov, Nat. Commun. 2016, 7, 10701.

[9]

Z.-Q. Li, Z.-L. Gong, T. Liang, S. Bernhard, Y.-W. Zhong, J. Yao, Sci. China Chem. 2023, 66, 2892.

[10]

Y.-J. Liu, Y. Liu, S.-Q. Zang, Angew. Chem. Int. Ed. 2023, 135, e202311572.

[11]

M. Liu, L. Zhang, T. Wang, Chem. Rev. 2015, 115, 7304.

[12]

Y. Sang, J. Han, T. Zhao, P. Duan, M. Liu, Adv. Mater. 2020, 32, 1900110.

[13]

Z.-L. Gong, X. Zhu, Z. Zhou, S.-W. Zhang, D. Yang, B. Zhao, Y.-P. Zhang, J. Deng, Y. Cheng, Y.-X. Zheng, S.-Q. Zang, H. Kuang, P. Duan, M. Yuan, C.-F. Chen, Y. S. Zhao, Y.-W. Zhong, B. Z. Tang, M. Liu, Sci. China Chem. 2021, 64, 2060.

[14]

B.-H. Liu, Y. Zong, N. Liu, Z.-Q. Wu, Sci. China Chem. 2024, 67, 3247.

[15]

Y. Deng, M. Wang, Y. Zhuang, S. Liu, W. Huang, Q. Zhao, Light 2021, 10, 76.

[16]

F. S. Richardson, J. P. Riehl, Chem. Rev. 1977, 77, 773.

[17]

J. P. Riehl, F. S. Richardson, Chem. Rev. 1986, 86, 1.

[18]

F. Zinna, L. Di Bari, Chirality 2015, 27, 1.

[19]

H. Zhong, X. Gao, B. Zhao, J. Deng, Acc. Chem. Res. 2024, 57, 1188.

[20]

R. Zhang, H. Zhong, K. Yang, K. Pan, B. Zhao, J. Deng, Adv. Funct. Mater. 2024, 2417308.

[21]

Z. Wang, Y. Li, A. Hao, P. Xing, Angew. Chem. Int. Ed. 2021, 60, 3138.

[22]

S. Hu, L. Hu, X. Zhu, Y. Wang, M. Liu, Angew. Chem. Int. Ed. 2021, 60, 19451.

[23]

Z.-F. Liu, X.-X. Liu, H. Zhang, L. Zeng, L.-Y. Niu, P.-Z. Chen, W.-H. Fang, X. Peng, G. Cui, Q.-Z. Yang, Angew. Chem. Int. Ed. 2024, 63, e202407135.

[24]

S. Ren, Z.-F. Liu, P. Li, H. Liu, M. Lu, K. Wang, J. Yao, H. Dong, Q.-Z. Yang, Y. S. Zhao, Angew. Chem. Int. Ed. 2024, 64, e202415092.

[25]

W. Shang, X. Zhu, Y. Jiang, J. Cui, K. Liu, T. Li, M. Liu, Angew. Chem. Int. Ed. 2022, 61, e202210604.

[26]

J. Liu, H. Su, L. Meng, Y. Zhao, C. Deng, J. C. Y. Ng, P. Lu, M. Faisal, J. W. Y. Lam, X. Huang, H. Wu, K. S. Wong, B. Z. Tang, Chem. Sci. 2012, 3, 2737.

[27]

M. Hu, F.-Y. Ye, W. Yu, K. Sheng, Z.-R. Xu, J.-J. Fu, X. Wen, H.-T. Feng, M. Liu, Y.-S. Zheng, Chem. Sci. 2024, 15, 16627.

[28]

K. Takaishi, K. Iwachido, T. Ema, J. Am. Chem. Soc. 2020, 142, 1774.

[29]

R. Kurosaki, M. Suzuki, H. Hayashi, M. Fujiki, N. Aratani, H. Yamada, Chem. Commun. 2019, 55, 9618.

[30]

T. Amako, K. Nakabayashi, N. Suzuki, S. Guo, N. A. A. Rahim, T. Harada, M. Fujiki, Y. Imai, Chem. Commun. 2015, 51, 8237.

[31]

S. Ito, K. Ikeda, S. Nakanishi, Y. Imai, M. Asami, Chem. Commun. 2017, 53, 6323.

[32]

J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Beng, Chem. Commun. 2001, 1740.

[33]

J. Han, J. You, X. Li, P. Duan, M. Liu, Adv. Mater. 2017, 29, 1606503.

[34]

T. Goto, Y. Okazaki, M. Ueki, Y. Kuwahara, M. Takafuji, R. Oda, H. Ihara, Angew. Chem. Int. Ed. 2017, 56, 2989.

[35]

Z. Li, Y. Q. Dong, J. W. Y. Lam, J. Sun, A. Qin, M. Häußler, Y. P. Dong, H. H. Sung, I. D. Williams, H. S. Kwok, B. Z. Beng, Adv. Funct. Mater. 2009, 19, 905.

[36]

J. C. Y. Ng, J. Liu, H. Su, Y. Hong, H. Li, J. W. Y. Lam, K. S. Wong, B. Z. Tang, J. Mater. Chem. C 2014, 2, 78.

[37]

J. C. Y. Ng, H. Li, Q. Yuan, J. Liu, C. Liu, X. Fan, B. S. Li, B. Z. Tang, J. Mater. Chem. C 2014, 2, 4615.

[38]

J. Roose, B. Z. Tang, K. S. Wong, Small 2016, 12, 6495.

[39]

H. Li, J. Cheng, Y. Zhao, J. W. Y. Lam, K. S. Wong, H. Wu, B. S. Li, B. Z. Tang, Mater. Horiz. 2014, 1, 518.

[40]

H. Li, J. Cheng, H. Deng, E. Zhao, B. Shen, J. W. Y. Lam, K. S. Wong, H. Wu, B. S. Li, B. Z. Tang, J. Mater. Chem. C 2015, 3, 2399.

[41]

H. Li, X. Zheng, H. Su, J. W. Y. Lam, K. S. Wong, S. Xue, X. Huang, X. Huang, B. S. Li, B. Z. Tang, Sci. Rep. 2016, 6, 19277.

[42]

S. Zhang, J. Fan, Y. Wang, D. Li, X. Jia, Y. Yuan, Y. Cheng, Mater. Chem. Front. 2019, 3, 2066.

[43]

G. Huang, R. Wen, Z. Wang, B. S. Li, B. Z. Tang, Mater. Chem. Front. 2018, 2, 1884.

[44]

Y.-X. Yuan, J.-H. Jia, Y.-P. Song, F.-Y. Ye, Y.-S. Zheng, S.-Q. Zang, J. Am. Chem. Soc. 2022, 144, 5389.

[45]

L. Zhang, T. Wang, Z. Shen, M. Liu, Adv. Mater. 2016, 28, 1044.

[46]

P. Duan, H. Cao, L. Zhang, M. Liu, Soft Matter 2014, 10, 5428.

[47]

P. Xing, Y. Zhao, Acc. Chem. Res. 2018, 51, 2324.

[48]

B.-C. Kim, H.-J. Choi, J.-J. Lee, F. Araoka, S.-W. Choi, Adv. Funct. Mater. 2019, 29, 1903246.

[49]

A. Nitti, D. Pasini, Adv. Mater. 2020, 32, 1908021.

[50]

K. Ariga, T. Mori, T. Kitao, T. Uemura, Adv. Mater. 2020, 32, 1905657.

[51]

H. Cao, P. Duan, X. Zhu, J. Jiang, M. Liu, Chem. Eur J. 2012, 18, 5546.

[52]

H. Ihara, M. Takafuji, C. Hirayama, D. F. O'Brien, Langmuir 1992, 8, 1548.

[53]

S. Wu, X. Song, C. Du, M. Liu, Nat. Commun. 2024, 15, 6233.

[54]

S. Wu, X. Song, J. Lu, W. Hao, M. Liu, Angew. Chem. Int. Ed. 2025, 64, e202421108.

[55]

L. Pérez-García, D. B. Amabilino, Chem. Soc. Rev. 2007, 36, 941.

[56]

I. D. Gridnev, Chem. Lett. 2006, 35, 148.

[57]

C. Tschierske, G. Ungar, ChemPhysChem 2016, 17, 9.

[58]

K. Okano, M. Taguchi, M. Fujiki, T. Yamashita, Angew. Chem. Int. Ed. 2011, 50, 12474.

[59]

Z. Shen, T. Wang, L. Shi, Z. Tang, M. Liu, Chem. Sci. 2015, 6, 4267.

[60]

Z. Shen, T. Wang, M. Liu, Angew. Chem. Int. Ed. 2014, 53, 13424.

[61]

Y. Sang, P. Duan, M. Liu, Chem. Commun. 2018, 54, 4025.

[62]

Y. Sang, D. Yang, P. Duan, M. Liu, Chem. Sci. 2019, 10, 2718.

[63]

Y. Sang, D. Yang, Z. Shen, P. Duan, M. Liu, J. Phys. Chem. C 2020, 124, 17274.

[64]

M. Zhou, Y. Sang, X. Jin, S. Chen, J. Guo, P. Duan, M. Liu, ACS Nano 2021, 15, 2753.

[65]

Z.-F. Liu, J. Ren, P. Li, L.-Y. Niu, Q. Liao, S. Zhang, Q.-Z. Yang, Angew. Chem. Int. Ed. 2023, 62, e202214211.

[66]

S. Tadepalli, J. M. Slocik, M. K. Gupta, R. R. Naik, S. Singamaneni, Chem. Rev. 2017, 117, 12705.

[67]

Y. L. Gagnon, R. M. Templin, M. J. How, N. J. Marshall, Curr. Biol. 2015, 25, 3074.

[68]

I. M. Daly, M. J. How, J. C. Partridge, S. E. Temple, N. J. Marshall, T. W. Cronin, N. W. Roberts, Nat. Commun. 2016, 7, 12140.

[69]

D.-W. Zhang, M. Li, C.-F. Chen, Chem. Soc. Rev. 2020, 49, 1331.

[70]

K. Baek, D.-M. Lee, Y.-J. Lee, H. Choi, J. Seo, I. Kang, C.-J. Yu, J.-H. Kim, Light Sci. Appl. 2019, 8, 120.

[71]

E. Peeters, M. P. T. Christiaans, R. A. J. Janssen, H. F. M. Schoo, H. P. J. M. Dekkers, E. W. Meijer, J. Am. Chem. Soc. 1997, 119, 9909.

[72]

Y. Geng, A. Trajkovska, S. W. Culligan, J. J. Ou, H. M. P. Chen, D. Katsis, S. H. Chen, J. Am. Chem. Soc. 2003, 125, 14032.

[73]

Y. Imai, Y. Nakano, T. Kawai, J. Yuasa, Angew. Chem. 2018, 130, 9111.

[74]

Y. Zhao, D. Niu, J. Tan, Y. Jiang, H. Zhu, G. Ouyang, M. Liu, Small Methods 2020, 4, 2000493.

[75]

J. R. Brandt, X. Wang, Y. Yang, A. J. Campbell, M. J. Fuchter, J. Am. Chem. Soc. 2016, 138, 9743.

[76]

T. Imagawa, S. Hirata, K. Totani, T. Watanabe, M. Vacha, Chem. Commun. 2015, 51, 13268.

[77]

Q. Jin, S. Chen, H. Jiang, Y. Wang, L. Zhang, M. Liu, Langmuir 2018, 34, 14402.

[78]

H.-T. Feng, C. Liu, Q. Li, H. Zhang, J. W. Y. Lam, B. Z. Tang, ACS Mater. Lett 2019, 1, 192.

[79]

M. Hu, H.-T. Feng, Y.-X. Yuan, Y.-S. Zheng, B. Z. Tang, Coord. Chem. Rev. 2020, 416, 213329.

[80]

K. Staszak, K. Wieszczycka, V. Marturano, B. Tylkowski, Coord. Chem. Rev. 2019, 397, 76.

RIGHTS & PERMISSIONS

2025 The Author(s). Smart Molecules published by John Wiley & Sons Australia, Ltd on behalf of Dalian University of Technology.

AI Summary AI Mindmap
PDF

29

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/