Fluorescent probes for the visualization of membrane microdomain, deformation, and fusion

Pei-Hong Tong , Tong-Yuan Wu , Mingle Li , Hai-Bin Wang , Feng Zheng , Lin Xu , Wei-Tao Dou

Smart Molecules ›› 2025, Vol. 3 ›› Issue (1) : e20240059

PDF
Smart Molecules ›› 2025, Vol. 3 ›› Issue (1) : e20240059 DOI: 10.1002/smo.20240059
REVIEW ARTICLE

Fluorescent probes for the visualization of membrane microdomain, deformation, and fusion

Author information +
History +
PDF

Abstract

The cell membrane, a fluid interface composed of self-assembled phospholipid molecules, is a vital component of biological systems that maintains cellular stability and prevents the invasion of foreign toxins. Due to its inherent fluidity, the cell membrane can undergo bending, shearing, and stretching, making membrane deformation crucial in processes like cell adhesion, migration, phagocytosis, and signal transduction. Within the plasma membrane are highly ordered dynamic structures formed by lipid molecules, known as “lipid rafts,” whose dynamic dissociation and reorganization are prerequisites for membrane deformation. Fluorescent probes have emerged as vital tools for studying these dynamic processes, offering a non-destructive, in situ, and real-time imaging method. By strategically designing these probes, researchers can image not only the microdomains of cell membranes but also explore more complex processes such as membrane fusion and fission. This review systematically summarizes the latest advancements in the application of fluorescent probes for cell membrane imaging. It also discusses the current challenges and provides insights into future research directions. We hope this review inspires further studies on the dynamic processes of complex cell membranes using fluorescent probes, ultimately advancing our understanding of the mechanisms underlying membrane dissociation, reorganization, fusion, and separation, and fostering research and therapeutic development for membrane-associated diseases.

Keywords

deformation / fluorescent probes / fusion / membrane microdomain

Cite this article

Download citation ▾
Pei-Hong Tong, Tong-Yuan Wu, Mingle Li, Hai-Bin Wang, Feng Zheng, Lin Xu, Wei-Tao Dou. Fluorescent probes for the visualization of membrane microdomain, deformation, and fusion. Smart Molecules, 2025, 3(1): e20240059 DOI:10.1002/smo.20240059

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) M. M. Kozlov, F. Campelo, N. Liska, L. V. Chernomordik, S. J. Marrink, H. T. McMahon, Curr. Opin. Cell Biol. 2014, 29, 53; b) T. A. Masters, B. Pontes, V. Viasnoff, Y. Li, N. C. Gauthier, Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 11875.

[2]

a) D. Lingwood, K. Simons, Science 2010, 327, 46; b) E. Sezgin, I. Levental, S. Mayor, C. Eggeling, Nat. Rev. Mol. Cell Biol. 2017, 18, 361; c) S. Behzadi, V. Serpooshan, W. Tao, M. A. Hamaly, M. Y. Alkawareek, E. C. Dreaden, D. Brown, A. M. Alkilany, O. C. Farokhzad, M. Mahmoudi, Chem. Soc. Rev. 2017, 46, 4218; d) A. R. Horwitz, J. T. Parsons, Science 1999, 286, 1102.

[3]

a) Y. Zhang, X. Chen, C. Gueydan, J. Han, Cell Res. 2018, 28, 9; b) X. Wu, J. J. Hu, J. Yoon, Angew. Chem. Int. Ed. 2024, 136, e202400249.

[4]

C. Dias, J. Nylandsted, Cell Discov. 2021, 7, 4.

[5]

a) A. J. García-Sáez, P. Schwille, Biochim. Biophys. Acta Biomembr. 2010, 1798, 766; b) Y. Shan, H. Wang, Chem. Soc. Rev. 2015, 44, 3617; c) J. W. Taraska, J. Gen. Physiol. 2019, 151, 974; d) S. Voci, B. Goudeau, G. Valenti, A. Lesch, M. Jović, S. Rapino, F. Paolucci, S. Arbault, N. Sojic, J. Am. Chem. Soc. 2018, 140, 14753; e) J. Zhang, R. Jin, D. Jiang, H.-Y. Chen, J. Am. Chem. Soc. 2019, 141, 10294.

[6]

a) X. X. Chen, F. Bayard, N. Gonzalez-Sanchis, K. K. P. Pamungkas, N. Sakai, S. Matile, Angew. Chem. 2023, 135, e202217868; b) E. Klotzsch, G. J. Schütz, T. R. Philos, Soc. B. 2013, 368, 20120033; c) V. Quentin, C. Adai, L. Romain, D. Emmanuel, G.-G. Marcos, V. Eric, R. Aurélien, S. Naomi, M. Stefan, S. Matile, J. Am. Chem. Soc. 2015, 137, 568; d) J. Huang, Y. Yao, L. Zhang, C. Yan, Z. Guo, Smart Mol. 2024, 2, e20240020; e) Y. Zhang, X. Lv, Y. Wang, X. Chen, J. Zhang, D. Su, Smart Mol. 2024, 2, e20240031.

[7]

C. Borgarelli, Y. E. Klingl, A. Escamilla-Ayala, S. Munck, L. Van Den Bosch, W. M. De Borggraeve, E. Ismalaj, Chem. Eur. J. 2021, 27, 8605.

[8]

L. Yang, Q. Chen, Z. Wang, H. Zhang, H. Sun, Coordin. Chem. Rev. 2023, 474, 214862.

[9]

A. Azzi, Q. Rev. Biophys. 1975, 8, 237.

[10]

a) A. S. Klymchenko, R. Kreder, Chem. Biol. 2014, 21, 97; b) O. A. Kucherak, S. Oncul, Z. Darwich, D. A. Yushchenko, Y. Arntz, P. Didier, Y. Mély, A. S. Klymchenko, J. Am. Chem. Soc. 2010, 132, 4907; c) V. V. Shynkar, A. S. Klymchenko, C. Kunzelmann, G. Duportail, C. D. Muller, A. P. Demchenko, J.-M. Freyssinet, Y. Mely, J. Am. Chem. Soc. 2007, 129, 2187.

[11]

A. Goujon, A. Colom, K. Strakova, V. Mercier, D. Mahecic, S. Manley, N. Sakai, A. Roux, S. Matile, J. Am. Chem. Soc. 2019, 141, 3380.

[12]

a) A. Gupta, F. Rivera-Molina, Z. Xi, D. Toomre, A. Schepartz, Nat. Chem. Biol. 2020, 16, 408; b) L. Chu, J. Tyson, J. E. Shaw, F. Rivera-Molina, A. J. Koleske, A. Schepartz, D. K. Toomre, Nat. Commun. 2020, 11, 4271.

[13]

a) P. Liu, E. W. Miller, Acc. Chem. Res. 2019, 53, 11; b) C. Wang, M. Taki, Y. Sato, Y. Tamura, H. Yaginuma, Y. Okada, S. Yamaguchi, Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 15817; c) S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, K. Xu, J. Am. Chem. Soc. 2017, 139, 10944; d) A. Colom, E. Derivery, S. Soleimanpour, C. Tomba, M. D. Molin, N. Sakai, M. González-Gaitán, S. Matile, A. Roux, Nat. Chem. 2018, 10, 1118.

[14]

B. Sun, R. Ma, X. Wang, S. Ma, W. Li, T. Liu, W. Zhu, Z. Ji, K. S. Hettie, C. Liu, Y. Liang, S. Zhu, VIEW 2024, 5, 20230097.

[15]

a) Q. Li, W. Zhu, S. Gong, S. Jiang, G. Feng, Anal. Chem. 2023, 95, 7254; b) Y. Liu, X. Li, W. Shi, H. Ma, Chem. Commu. 2022, 58, 12815; c) S. Sun, Y. Liu, J. Xia, M. Wang, R. Tang, C. Lei, Y. Huang, Z. Nie, S. Yao, Chem. Commun. 2019, 55, 2218; d) S. Wu, Y. Yan, H. Hou, Z. Huang, D. Li, X. Zhang, Y. Xiao, Anal. Chem. 2022, 94, 11238; e) S.-Q. Xu, Z.-Y. Sie, J.-I. Hsu, K.-T. Tan, Anal. Chem. 2023, 95, 15549; f) Z. Ye, W. Yang, Y. Zheng, S. Wang, X. Zhang, H. Yu, S. Li, C. Luo, X. Peng, Y. Xiao, Angew. Chem. Int. Ed. 2022, 61, e202211540.

[16]

a) L. V. Chernomordik, M. M. Kozlov, Nat. Struct. Mol. Biol. 2008, 15, 675; b) R. Blumenthal, M. J. Clague, S. R. Durell, R. M. Epand, Chem. Rev. 2003, 103, 53; c) M. M. Kozlov, L. V. Chernomordik, Curr. Opin. Struct. Biol. 2015, 33, 61; d) S. Suetsugu, S. Kurisu, T. Takenawa, Physiol. Rev. 2014, 94, 1219.

[17]

D. I. Danylchuk, S. Moon, K. Xu, A. S. Klymchenko, Angew. Chem. 2019, 131, 15062.

[18]

L. D. Zorova, V. A. Popkov, E. Y. Plotnikov, D. N. Silachev, I. B. Pevzner, S. S. Jankauskas, V. A. Babenko, S. D. Zorov, A. V. Balakireva, M. Juhaszova, S. J. Sollott, Anal. Biochem. 2018, 552, 50.

[19]

M. Giacomello, A. Pyakurel, C. Glytsou, L. Scorrano, Nat. Rev. Mol. Cell Biol. 2020, 21, 204.

[20]

K. A. Willets, A. J. Wilson, V. Sundaresan, P. B. Joshi, Chem. Rev. 2017, 117, 7538.

[21]

J. Garcia-Calvo, J. Maillard, I. Fureraj, K. Strakova, A. Colom, V. Mercier, A. Roux, E. Vauthey, N. Sakai, A. Fürstenberg, S. Matile, J. Am. Chem. Soc. 2020, 142, 12034.

[22]

a) J. A. Levitt, M. K. Kuimova, G. Yahioglu, P.-H. Chung, K. Suhling, D. Phillips, J. Phys. Chem. C 2009, 113, 11634; b) G. Licari, K. Strakova, S. Matile, E. Tajkhorshid, Chem. Sci. 2020, 11, 5637; c) J. Maillard, E. Grassin, E. Bestsennaia, M. Silaghi, K. Straková, J. García-Calvo, N. Sakai, S. Matile, A. Fürstenberg, J. Phys. Chem. B 2024, 128, 7997; d) M. Dal Molin, Q. Verolet, S. Soleimanpour, S. Matile, Chem. Eur. J. 2015, 21, 6012.

[23]

a) W.-T. Dou, X. Wang, T. Liu, S. Zhao, J.-J. Liu, Y. Yan, J. Li, C.-Y. Zhang, A. C. Sedgwick, H. Tian, J. L. Sessler, D. M. Zhou, X. P. He, Chem 2022, 8, 1750; b) X.-L. Hu, H.-Q. Gan, Z.-Y. Qin, Q. Liu, M. Li, D. Chen, J. L. Sessler, H. Tian, X.-P. He, J. Am. Chem. Soc. 2023, 145, 8917; c) J. Ramos-Soriano, S. J. Benitez-Benitez, A. P. Davis, M. C. Galan, Angew. Chem. Int. Ed. 2021, 60, 16880; d) W. T. Xu, X. Li, P. Wu, W. J. Li, Y. Wang, X. Q. Xu, X. Q. Wang, J. Chen, H. B. Yang, W. Wang, Angew. Chem. Int. Ed. 2024, 63, e202319502; e) X. Chen, S. Yuan, M. Qiao, X. Jin, J. Chen, L. Guo, J. Su, D.-H. Qu, Z. Zhang, J. Am. Chem. Soc. 2023, 145, 26494; f) C. Zhao, K. Chen, W. Yang, Z. Zhang, D.-H. Qu, Dye Pigm. 2022, 199, 110096.

[24]

H. V. Humeniuk, A. Rosspeintner, G. Licari, V. Kilin, L. Bonacina, E. Vauthey, N. Sakai, S. Matile, Angew. Chem. Int. Ed. 2018, 57, 10559.

[25]

C.-H. Wu, Y. Chen, K. A. Pyrshev, Y.-T. Chen, Z. Zhang, K.-H. Chang, S. O. Yesylevskyy, A. P. Demchenko, P.-T. Chou, ACS Chem. Biol. 2020, 15, 1862.

[26]

a) S. Xu, W. Pan, Z.-L. Song, L. Yuan, Molecules 2023, 28, 1906; b) A. S. Klymchenko, Acc. Chem. Res. 2022, 56, 1; c) C. Liu, X. Gao, J. Yuan, R. Zhang, TrAC-Trend Anal. Chem. 2020, 133, 116092.

[27]

M. Collot, P. Ashokkumar, H. Anton, E. Boutant, O. Faklaris, T. Galli, Y. Mély, L. Danglot, A. S. Klymchenko, Cell Chem. Biol. 2019, 26, 600.

[28]

N. Mohandas, P. G. Gallagher, Blood 2008, 112, 3939.

[29]

a) K. Farsad, P. De Camilli, Curr. Opin. Cell Biol. 2003, 15, 372; b) H. T. McMahon, J. L. Gallop, Nature 2005, 438, 590.

[30]

R. Yan, K. Chen, K. Xu, J. Am. Chem. Soc. 2020, 142, 18866.

[31]

a) K. Haase, A. E. Pelling, Cytoskeleton 2013, 70, 494; b) O. V. Kondrashov, S. A. Akimov, Biomolecules 2023, 13, 1731.

[32]

K. K. P. Pamungkas, I. Fureraj, L. Assies, N. Sakai, V. Mercier, X. X. Chen, E. Vauthey, S. Matile, Angew. Chem. Int. Ed. 2024, 63, e202406204.

[33]

a) T. M. Tsubone, M. S. Baptista, R. Itri, Biophys. Chem. 2019, 254, 106263; b) D. Wiczew, N. Szulc, M. Tarek, Bioelectrochemistry 2021, 141, 107869.

[34]

M. Balakrishnan, A. K. Kenworthy, J. Am. Chem. Soc. 2024, 146, 1374.

[35]

C. Ayala-Orozco, D. Galvez-Aranda, A. Corona, J. M. Seminario, R. Rangel, J. N. Myers, J. M. Tour, Nat. Chem. 2024, 16, 456.

[36]

a) X. Cheng, J. C. Smith, Chem. Rev. 2019, 119, 5849; b) H. Zhang, H. Ma, X. Yang, L. Fan, S. Tian, R. Niu, M. Yan, M. Zheng, S. Zhang, Front. Cell Dev. Biol. 2022, 9, 809668; c) N. G. Brukman, B. Uygur, B. Podbilewicz, L. V. Chernomordik, J. Cell Biol. 2019, 218, 1436; d) E. H. Chen, E. N. Olson, Science 2005, 308, 369.

[37]

C. Yao, A. Peng, P. Wu, J. Zuo, J. Pan, C. Kong, Z. Qian, Z. Jin, H. Feng, Talanta 2024, 279, 126583.

[38]

J. Zuo, A. Peng, P. Wu, J. Chen, C. Yao, J. Pan, E. Zhu, Y. Weng, K. Zhang, H. Feng, Z. Jin, Z. Qian, Chem. Sci. 2024, 15, 8934.

[39]

a) D. Maity, Beilstein J. Org. Chem. 2020, 16, 2971; b) M. Minoshima, S. I. Reja, R. Hashimoto, K. Iijima, K. Kikuchi, Chem. Rev. 2024, 124, 6198; c) W. Bo, C. Xiangdong, X. Jianxi, Acta Chim. Sinica 2024, 82, 367.

[40]

N. H. Revelo, S. O. Rizzoli, Curr. Protoc. Neurosci. 2016, 74, 2.25.21.

[41]

W. Shin, L. Ge, G. Arpino, S. A. Villarreal, E. Hamid, H. Liu, W.-D. Zhao, P. J. Wen, H.-C. Chiang, L.-G. Wu, Cell 2018, 173, 934.

[42]

W.-D. Zhao, E. Hamid, W. Shin, P. J. Wen, E. S. Krystofiak, S. A. Villarreal, H.-C. Chiang, B. Kachar, L.-G. Wu, Nature 2016, 534, 548.

[43]

C. Jumeaux, C. D. Spicer, P. Charchar, P. D. Howes, M. N. Holme, L. Ma, N. C. Rose, J. Nabarro, M. A. Fascione, M. H. Rashid, I. Yarovsky, M. M. Stevens, Angew. Chem. Int. Ed. 2024, 63, e202314786.

[44]

a) J. Ma, R. Sun, K. Xia, Q. Xia, Y. Liu, X. Zhang, Chem. Rev. 2024, 124, 1738; b) A. Sharma, P. Verwilst, M. Li, D. Ma, N. Singh, J. Yoo, Y. Kim, Y. Yang, J.-H. Zhu, H. Huang, X. L. Hu, X. P. He, L. Zeng, T. D. James, X. Peng, J. L. Sessler, J. S. Kim, Chem. Rev. 2024, 124, 2699.

[45]

a) G. Vereb, J. Szöllősi, J. Matko, P. Nagy, T. Farkas, L. Vigh, L. Matyus, T. Waldmann, S. Damjanovich, Proc. Nat. Acad. Sci. 2003, 100, 8053; b) P. Janmey, P. K. Kinnunen, Trend Cell Biol. 2006, 16, 538.

[46]

J. M. Kefauver, M. Hakala, L. Zou, J. Alba, J. Espadas, M. G. Tettamanti, J. Gajić, C. Gabus, P. Campomanes, L. F. Estrozi, Nature 2024, 1.

[47]

J. G. Carlton, H. Jones, U. S. Eggert, Nat. Rev. Mol. Cell Biol. 2020, 21, 151.

[48]

a) W. Li, G. S. Kaminski Schierle, B. Lei, Y. Liu, C. F. Kaminski, Chem. Rev. 2022, 122, 12495; b) J. Valli, A. Garcia-Burgos, L. M. Rooney, B. V. d. M. e Oliveira, R. R. Duncan, C. Rickman, J. Biol. Chem. 2021, 297, 100791.

[49]

S. H. Suhaili, H. Karimian, M. Stellato, T.-H. Lee, M.-I. Aguilar, Biophys. Rev. 2017, 9, 443.

[50]

A. C. Conibear, Nat. Rev. Chem. 2020, 4, 674.

[51]

a) Q.-J. Duan, Z.-Y. Zhao, Y.-J. Zhang, L. Fu, Y.-Y. Yuan, J.-Z. Du, J. Wang, Adv. Drug Deliv. Rev. 2023, 196, 114793; b) X. Wu, R. Wang, N. Kwon, H. Ma, J. Yoon, Chem. Soc. Rev. 2022, 51, 450;c) E. Lacivita, M. Leopoldo, F. Berardi, N. A Colabufo, R. Perrone, Curr. Med. Chem. 2012, 19, 4731.

[52]

W. Hu, L. Zhang, Y. Tan, J. Luo, J. Xin, G. Zhang, J. Xu, Y. Zhang, Y. Xu, K. Li, C. Mao, VIEW 2024, 5, 20230120.

[53]

M. Cebecauer, M. Amaro, P. Jurkiewicz, M. J. Sarmento, R. Šachl, L. Cwiklik, M. Hof, Chem. Rev. 2018, 118, 11259.

RIGHTS & PERMISSIONS

2024 The Author(s). Smart Molecules published by John Wiley & Sons Australia, Ltd on behalf of Dalian University of Technology.

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/