Visible light-responsive azo-based smart materials: Design, performance, and applications in energy storage

Shurui Lv , Yuang Zhang , Wentao Wang , Shufen Zhang , Bingtao Tang

Smart Molecules ›› 2024, Vol. 2 ›› Issue (4) : e20240058

PDF
Smart Molecules ›› 2024, Vol. 2 ›› Issue (4) : e20240058 DOI: 10.1002/smo.20240058
REVIEW ARTICLE

Visible light-responsive azo-based smart materials: Design, performance, and applications in energy storage

Author information +
History +
PDF

Abstract

Azobenzene and its derivatives are the most extensively investigated and applied molecular photoswitches, which can undergo reversible transformation between trans and cis isomers upon irradiation with light at specific wavelengths. Through structural geometry transformation, the property alterations can be integrated into smart materials to meet diverse application requirements. Most azo-based photoswitches require UV light for activation. However, complete activation within the visible or even near-infrared light range could offer several benefits for photoswitch applications, including improved biocompatibility, better light penetration, and enhanced solar light utilization efficiency. This review presents an overview of the development of visible-light responsive azo-based materials, covering molecular design strategies and their applications in energy storage. Recent efforts aimed at enhancing the performance of azo-based energy storage materials are highlighted. According to the different strategies for improving energy storage properties, these materials are categorized as those that directly increase isomerization energy and those that introduce phase transition energy. Furthermore, we discuss the challenges and opportunities in this field with a view to inspire further exploration.

Keywords

energy storage materials / photochemistry

Cite this article

Download citation ▾
Shurui Lv, Yuang Zhang, Wentao Wang, Shufen Zhang, Bingtao Tang. Visible light-responsive azo-based smart materials: Design, performance, and applications in energy storage. Smart Molecules, 2024, 2(4): e20240058 DOI:10.1002/smo.20240058

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Wang, Q. Li, Chem. Soc. Rev. 2018, 47, 1044.

[2]

G. S. Hartley, Nature 1937, 140, 281.

[3]

E. Merino, M. Ribagorda, Beilstein J. Org. Chem. 2012, 8, 1071.

[4]

L. Angiolini, Macromol. Chem. Phys. 2010, 211, 481.

[5]

S. Crespi, N. A. Simeth, B. König, Nat. Rev. Chem 2019, 3, 133.

[6]

D. Bléger, S. Hecht, Angew. Chem. Int. Ed. 2015, 54, 11338.

[7]

H. Chen, W. Chen, Y. Lin, Y. Xie, S. H. Liu, J. Yin, Chin. Chem. Lett. 2021, 32, 2359.

[8]

M. Gao, D. Kwaria, Y. Norikane, Y. Yue, Nat. Sci. 2023, 3, e220020.

[9]

S. Wu, H.-J. Butt, Macromol. Rapid Commun. 2020, 41, 1900413.

[10]

H.-D. Scharf, J. Fleischhauer, H. Leismann, I. Ressler, W. Schleker, R. Weitz, Angew. Chem. Int. Ed. 1979, 18, 652.

[11]

C.-L. Sun, C. Wang, R. Boulatov, ChemPhotoChem 2019, 3, 268.

[12]

A. A. Beharry, O. Sadovski, G. A. Woolley, J. Am. Chem. Soc. 2011, 133, 19684.

[13]

D. Bléger, J. Schwarz, A. M. Brouwer, S. Hecht, J. Am. Chem. Soc. 2012, 134, 20597.

[14]

D. B. Konrad, G. Savasci, L. Allmendinger, D. Trauner, C. Ochsenfeld, A. M. Ali, J. Am. Chem. Soc. 2020, 142, 6538.

[15]

S. Bhunia, A. Dolai, S. Samanta, Chem. Commun. 2020, 56, 10247.

[16]

L. N. Lameijer, S. Budzak, N. A. Simeth, M. J. Hansen, B. L. Feringa, D. Jacquemin, W. Szymanski, Angew. Chem. Int. Ed. 2020, 59, 21663.

[17]

Y. He, Z. Shangguan, Z.-Y. Zhang, M. Xie, C. Yu, T. Li, Angew. Chem. Int. Ed. 2021, 60, 16539.

[18]

R. Lin, P. K. Hashim, S. Sahu, A. S. Amrutha, N. M. Cheruthu, S. Thazhathethil, K. Takahashi, T. Nakamura, T. Kikukawa, N. Tamaoki, J. Am. Chem. Soc. 2023, 145, 9072.

[19]

T. Dang, D. Dong, J. Zhang, Y. He, Z.-Y. Zhang, T. Li, Angew. Chem. Int. Ed. 2023, 62, e202301992.

[20]

O. Sadovski, A. A. Beharry, F. Zhang, G. A. Woolley, Angew. Chem. Int. Ed. 2009, 48, 1484.

[21]

S. Samanta, T. M. McCormick, S. K. Schmidt, D. S. Seferos, G. A. Woolley, Chem. Commun. 2013, 49, 10314.

[22]

S. Samanta, A. A. Beharry, O. Sadovski, T. M. McCormick, A. Babalhavaeji, V. Tropepe, G. A. Woolley, J. Am. Chem. Soc. 2013, 135, 9777.

[23]

C. Knie, M. Utecht, F. Zhao, H. Kulla, S. Kovalenko, A. M. Brouwer, P. Saalfrank, S. Hecht, D. Bléger, Chem. Eur J. 2014, 20, 16492.

[24]

C. E. Weston, R. D. Richardson, P. R. Haycock, A. J. P. White, M. J. Fuchter, J. Am. Chem. Soc. 2014, 136, 11878.

[25]

C. E. Weston, R. D. Richardson, M. J. Fuchter, Chem. Commun. 2016, 52, 4521.

[26]

N. A. Simeth, S. Crespi, M. Fagnoni, B. König, J. Am. Chem. Soc. 2018, 140, 2940.

[27]

A. D. W Kennedy, I. Sandler, J. Andréasson, J. Ho, J. E. Beves, Chem. Eur J. 2020, 26, 1103.

[28]

J. Simke, T. Bösking, B. J. Ravoo, Org. Lett. 2021, 23, 7635.

[29]

S. A. M. Steinmüller, M. Odaybat, G. Galli, D. Prischich, M. J. Fuchter, M. Decker, Chem. Sci. 2024, 15, 5360.

[30]

M. Wegener, M. J. Hansen, A. J. M. Driessen, W. Szymanski, B. L. Feringa, J. Am. Chem. Soc. 2017, 139, 17979.

[31]

K. Kumar, C. Knie, D. Bléger, M. A. Peletier, H. Friedrich, S. Hecht, D. J. Broer, M. G. Debije, A. P. H. J. Schenning, Nat. Commun. 2016, 7, 11975.

[32]

S. Iamsaard, E. Anger, S. J. Aßhoff, A. Depauw, S. P. Fletcher, N. Katsonis, Angew. Chem. Int. Ed. 2016, 55, 9908.

[33]

M. Hendrikx, J. Ter Schiphorst, E. P. A. Van Heeswijk, G. Koçer, C. Knie, D. Bléger, S. Hecht, P. Jonkheijm, D. J. Broer, A. P. H. J. Schenning, Small 2018, 14, 1803274.

[34]

B. R. Donovan, V. M. Matavulj, S. Ahn, T. Guin, T. J. White, Adv. Mater. 2019, 31, 1805750.

[35]

L. Qin, W. Gu, J. Wei, Y. Yu, Adv. Mater. 2018, 30, 1704941.

[36]

H. Wang, H. K. Bisoyi, A. M. Urbas, T. J. Bunning, Q. Li, J. Am. Chem. Soc. 2019, 141, 8078.

[37]

S. Schultzke, N. Scheuring, P. Puylaert, M. Lehmann, A. Staubitz, Adv. Sci. 2023, 10, 2302692.

[38]

E. M. Hilton, M. A. Jinks, A. D. Burnett, N. J. Warren, A. J. Wilson, Chem. Eur J. 2024, 30, e202304033.

[39]

C. Courtine, I. Hamouda, S. Pearson, L. Billon, P. Lavedan, S. Ladeira, J.-C. Micheau, V. Pimienta, E. Nicol, N. Lauth de Viguerie, A.-F. Mingotaud, J. Colloid Interface Sci. 2023, 629, 670.

[40]

V. N. Georgiev, A. Grafmüller, D. Bléger, S. Hecht, S. Kunstmann, S. Barbirz, R. Lipowsky, R. Dimova, Adv. Sci. 2018, 5, 1800432.

[41]

A. Seliwjorstow, M. Bach, S. Kirchner, S. Palloks, Z. L. Pianowski, Macromol. Mater. Eng. 2024, 309, 2400007.

[42]

A.-L. Leistner, S. Kirchner, J. Karcher, T. Bantle, M. L. Schulte, P. Gödtel, C. Fengler, Z. L. Pianowski, Chem. Eur J. 2021, 27, 8094.

[43]

C. Courtine, P.-L. Brient, I. Hamouda, N. Pataluch, P. Lavedan, J.-L. Putaux, C. Chatard, C. Galès, A.-F. Mingotaud, N. Lauth de Viguerie, E. Nicol, J. Photochem. Photobiol. A-chem. 2023, 439, 114630.

[44]

B. Heinrich, K. Bouazoune, M. Wojcik, U. Bakowsky, O. Vázquez, Org. Biomol. Chem. 2019, 17, 1827.

[45]

J. Volarić, J. Buter, A. M. Schulte, K.-O. van den Berg, E. Santamaría-Aranda, W. Szymanski, B. L. Feringa, J. Org. Chem. 2022, 87, 14319.

[46]

M. L. Hammill, K. Tsubaki, Y. Wang, G. Islam, M. Kitamura, T. Okauchi, J.-P. Desaulniers, Chembiochem 2022, 23, e202200386.

[47]

D. Mutruc, A. Goulet-Hanssens, S. Fairman, S. Wahl, A. Zimathies, C. Knie, S. Hecht, Angew. Chem. Int. Ed. 2019, 58, 12862.

[48]

J. Sheng, J. Perego, S. Bracco, P. Cieciórski, W. Danowski, A. Comotti, B. L. Feringa, Angew. Chem. Int. Ed. 2024, 63, e202404878.

[49]

G. Wang, Y. Feng, X. Ye, Z. Li, S. Tao, D. Jiang, J. Am. Chem. Soc. 2024, 146, 10953.

[50]

Y. Feng, G. Wang, R. Liu, X. Ye, S. Tao, M. A. Addicoat, Z. Li, Q. Jiang, D. Jiang, Angew. Chem. Int. Ed. 2024, 63, e202400009.

[51]

A. Mukherjee, M. D. Seyfried, B. J. Ravoo, Angew. Chem. Int. Ed. 2023, 62, e202304437.

[52]

T. Dang, Z.-Y. Zhang, T. Li, J. Am. Chem. Soc. 2024, 146, 19609.

[53]

J. Calbo, A. R. Thawani, R. S. L. Gibson, A. J. P. White, M. J. Fuchter, Beilstein J. Org. Chem. 2019, 15, 2753.

[54]

L. Dong, Y. Feng, L. Wang, W. Feng, Chem. Soc. Rev. 2018, 47, 7339.

[55]

X. Xu, J. Feng, W.-Y. Li, G. Wang, W. Feng, H. Yu, Prog. Polym. Sci. 2024, 149, 101782.

[56]

X. Xu, G. Wang, Small 2022, 18, 2107473.

[57]

S. Wu, T. Li, Z.-Y. Zhang, T. Li, R. Wang, Matter 2021, 4, 3385.

[58]

Z. Wang, P. Erhart, T. Li, Z.-Y. Zhang, D. Sampedro, Z. Hu, H. A. Wegner, O. Brummel, J. Libuda, M. B. Nielsen, K. Moth-Poulsen, Joule 2021, 5, 3116.

[59]

E. N. Cho Master Thesis, Massachusetts Institute of Technology 2017.

[60]

K. Ranabhat, L. Patrikeev, A. Antal’evna-Revina, K. Andrianov, V. Lapshinsky, E. Sofronova, J. Appl. Eng. Sci. 2016, 14, 481.

[61]

A. M. Kolpak, J. C. Grossman, Nano Lett. 2011, 11, 3156.

[62]

A. M. Kolpak, J. C. Grossman, J. Chem. Phys. 2013, 138, 034303.

[63]

X. Yang, S. Li, J. Zhao, X. Wang, H. Huang, Y. Wang, Sol. Energy Mater. Sol. Cells 2021, 231, 111330.

[64]

A. K. Saydjari, P. Weis, S. Wu, Adv. Energy Mater. 2017, 7, 1601622.

[65]

H. Wang, Y. Feng, J. Gao, W. Fang, J. Ge, X. Yang, F. Zhai, Y. Yu, W. Feng, Adv. Sci. 2022, 9, 2201657.

[66]

T. J. Kucharski, N. Ferralis, A. M. Kolpak, J. O. Zheng, D. G. Nocera, J. C. Grossman, Nat. Chem. 2014, 6, 441.

[67]

W. Luo, Y. Feng, C. Cao, M. Li, E. Liu, S. Li, C. Qin, W. Hu, W. Feng, J. Mater. Chem. A 2015, 3, 11787.

[68]

W. Luo, Y. Feng, C. Qin, M. Li, S. Li, C. Cao, P. Long, E. Liu, W. Hu, K. Yoshino, W. Feng, Nanoscale 2015, 7, 16214.

[69]

X. Zhao, Y. Feng, C. Qin, W. Yang, Q. Si, W. Feng, ChemSusChem 2017, 10, 1395.

[70]

W. Feng, S. Li, M. Li, C. Qin, Y. Feng, J. Mater. Chem. A 2016, 4, 8020.

[71]

W. Yang, Y. Feng, Q. Si, Q. Yan, P. Long, L. Dong, L. Fu, W. Feng, J. Mater. Chem. A 2018, 7, 97.

[72]

S. P. Jeong, L. A. Renna, C. J. Boyle, H. S. Kwak, E. Harder, W. Damm, D. Venkataraman, Sci. Rep. 2017, 7, 17773.

[73]

J. Han, C. Xie, Y.-S. Huang, M. Wagner, W. Liu, X. Zeng, J. Liu, S. Sun, K. Koynov, H.-J. Butt, S. Wu, J. Am. Chem. Soc. 2021, 143, 12736.

[74]

L. Chen, H. K. Bisoyi, Y. Huang, S. Huang, M. Wang, H. Yang, Q. Li, Angew. Chem. Int. Ed. 2021, 60, 16394.

[75]

K. Ishiba, M. Morikawa, C. Chikara, T. Yamada, K. Iwase, M. Kawakita, N. Kimizuka, Angew. Chem. Int. Ed. 2015, 54, 1532.

[76]

M. Hoshino, E. Uchida, Y. Norikane, R. Azumi, S. Nozawa, A. Tomita, T. Sato, S. Adachi, S. Koshihara, J. Am. Chem. Soc. 2014, 136, 9158.

[77]

H. Akiyama, M. Yoshida, Adv. Mater. 2012, 24, 2353.

[78]

P. Weis, W. Tian, S. Wu, Chem. Eur J. 2018, 24, 6494.

[79]

J. Hu, T. Song, M.-M. Yu, H. Yu, Chem. Mater. 2023, 35, 4621.

[80]

S. Eligehausen, S. M. Sarge, G. Öhlschläger, H. K. Cammenga, J. Therm. Anal. 1989, 35, 515.

[81]

W.-C. Xu, S. Sun, S. Wu, Angew. Chem. Int. Ed. 2019, 58, 9712.

[82]

Y. Norikane, E. Uchida, S. Tanaka, K. Fujiwara, E. Koyama, R. Azumi, H. Akiyama, H. Kihara, M. Yoshida, Org. Lett. 2014, 16, 5012.

[83]

E. Uchida, K. Sakaki, Y. Nakamura, R. Azumi, Y. Hirai, H. Akiyama, M. Yoshida, Y. Norikane, Chem. Eur J. 2013, 19, 17391.

[84]

H. Akiyama, M. Yoshida, H. Kihara, Y. Norikane, R. Azumi, J. Photopolym, Sci. Technol. 2014, 27, 301.

[85]

H. Akiyama, S. Kanazawa, Y. Okuyama, M. Yoshida, H. Kihara, H. Nagai, Y. Norikane, R. Azumi, ACS Appl. Mater. Interfaces 2014, 6, 7933.

[86]

Y. Norikane, E. Uchida, S. Tanaka, K. Fujiwara, H. Nagai, H. Akiyama, J. Photopolym, Sci. Technol. 2016, 29, 149.

[87]

Y. Norikane, S. Tanaka, E. Uchida, CrystEngComm 2016, 18, 7225.

[88]

K. Imato, N. Kaneda, Y. Ooyama, Polym. J. 2024, 56, 269.

[89]

J. Hu, S. Huang, M. Yu, H. Yu, Adv. Energy Mater. 2019, 9, 1901363.

[90]

J. Gao, Y. Feng, W. Fang, H. Wang, J. Ge, X. Yang, H. Yu, M. Qin, W. Feng, Energy Environ. Mater. 2024, 7, e12607.

[91]

Q. Yang, J. Ge, M. Qin, H. Wang, X. Yang, X. Zhou, B. Zhang, Y. Feng, W. Feng, Sci. China Mater. 2023, 66, 3609.

[92]

J. Tang, Y. Feng, W. Feng, Compos. Commun. 2021, 23, 100575.

[93]

Q. Qiu, M. A. Gerkman, Y. Shi, G. G. D. Han, Chem. Commun. 2021, 57, 9458.

[94]

H. Liu, Y. Feng, W. Feng, Compos. Commun. 2020, 21, 100402.

[95]

K. Griffiths, N. R. Halcovitch, J. M. Griffin, New J. Chem. 2022, 46, 4057.

[96]

Z. Zhao, Y. Cui, Y. Kong, J. Ren, X. Jiang, W. Yan, M. Li, J. Tang, X. Liu, X. Shen, ACS Appl. Mater. Interfaces 2021, 13, 21286.

[97]

Z.-Y. Zhang, Y. He, Z. Wang, J. Xu, M. Xie, P. Tao, D. Ji, K. Moth-Poulsen, T. Li, J. Am. Chem. Soc. 2020, 142, 12256.

[98]

Z. Wang, Z. Wu, Z. Hu, J. Orrego-Hernández, E. Mu, Z.-Y. Zhang, M. Jevric, Y. Liu, X. Fu, F. Wang, T. Li, K. Moth-Poulsen, Cell Rep. Phys. Sci. 2022, 3, 100789.

[99]

L. Fei, Z. Zhang, Y. Tan, T. Ye, D. Dong, Y. Yin, T. Li, C. Wang, Adv. Mater. 2023, 35, 2209768.

[100]

Z. Zhang, Y. He, Y. Zhou, C. Yu, L. Han, T. Li, Chem. Eur J. 2019, 25, 13402.

[101]

S. Wu, Z.-Y. Zhang, T. Li, R. Wang, T. Li, ACS Mater. Lett. 2023, 5, 2019.

[102]

H. Huang, T. Shi, R. He, J. Wang, P. K. Chu, X.-F. Yu, Adv. Sci. 2020, 7, 2000602.

[103]

M. Morikawa, H. Yang, K. Ishiba, K. Masutani, J. Hui, N. Kimizuka, Chem. Lett. 2020, 49, 736.

[104]

M. A. Gerkman, R. S. L. Gibson, J. Calbo, Y. Shi, M. J. Fuchter, G. G. D. Han, J. Am. Chem. Soc. 2020, 142, 8688.

[105]

A. Gonzalez, M. Odaybat, M. Le, J. L. Greenfield, A. J. P. White, X. Li, M. J. Fuchter, G. G. D. Han, J. Am. Chem. Soc. 2022, 144, 19430.

[106]

Y. Shi, M. A. Gerkman, Q. Qiu, S. Zhang, G. G. D. Han, J. Mater. Chem. A 2021, 9, 9798.

[107]

D. Kwaria, K. McGehee, S. Liu, Y. Kikkawa, S. Ito, Y. Norikane, ACS Appl. Opt. Mater. 2023, 1, 633.

[108]

A. Krishna KM, S. Sony, S. Dhingra, M. Gupta, ACS Mater. Lett. 2023, 5, 3248.

[109]

Z. Zhang, D. Dong, T. Bösking, T. Dang, C. Liu, W. Sun, M. Xie, S. Hecht, T. Li, Angew. Chem. Int. Ed. 2024, 63, e202404528.

[110]

Z. Shangguan, W. Sun, Z.-Y. Zhang, D. Fang, Z. Wang, S. Wu, C. Deng, X. Huang, Y. He, R. Wang, T. Li, K. Moth-Poulsen, T. Li, Chem. Sci. 2022, 13, 6950.

[111]

C. Lee, D. Ndaya, R. Bosire, N. K. Kim, R. M. Kasi, C. O. Osuji, J. Am. Chem. Soc. 2022, 144, 390.

[112]

C. Shang, Z. Xiong, S. Liu, W. Yu, Macromolecules 2022, 55, 3711.

[113]

B. Yang, F. Cai, S. Huang, H. Yu, Angew. Chem. Int. Ed. 2020, 59, 4035.

[114]

S. Ito, A. Yamashita, H. Akiyama, H. Kihara, M. Yoshida, Macromolecules 2018, 51, 3243.

[115]

A. S. Kuenstler, K. D. Clark, J. Read de Alaniz, R. C. Hayward, ACS Macro Lett. 2020, 9, 902.

[116]

Y. Guo, J. Xiao, Y. Sun, B. Song, H. Zhang, B. Dong, J. Mater. Chem. A 2021, 9, 9364.

[117]

S. Ito, H. Akiyama, M. Mori, M. Yoshida, H. Kihara, J. Polym. Sci. 2020, 58, 568.

[118]

R. Zhao, J. Mu, J. Bai, W. Zhao, P. Gong, L. Chen, N. Zhang, X. Shang, F. Liu, S. Yan, ACS Appl. Mater. Interfaces 2022, 14, 16678.

[119]

Y. Yue, Y. Norikane, R. Azumi, E. Koyama, Nat. Commun. 2018, 9, 3234.

[120]

H. Zhou, C. Xue, P. Weis, Y. Suzuki, S. Huang, K. Koynov, G. K. Auernhammer, R. Berger, H.-J. Butt, S. Wu, Nat. Chem. 2017, 9, 145.

[121]

F. Cai, B. Yang, X. Lv, W. Feng, H. Yu, Sci. Adv. 2022, 8, eabo1626.

[122]

F. Cai, T. Song, B. Yang, X. Lv, L. Zhang, H. Yu, Chem. Mater. 2021, 33, 9750.

[123]

X. Xu, B. Wu, P. Zhang, Y. Xing, K. Shi, W. Fang, H. Yu, G. Wang, ACS Appl. Mater. Interfaces 2021, 13, 22655.

[124]

X. Xu, Y. Xing, Y. Yin, W. Fang, B. Wu, P. Bei, J. Feng, H. Yu, G. Wang, W.-Y. Li, Chem. Eng. J. 2023, 466, 143175.

[125]

X. Xu, P. Zhang, B. Wu, Y. Xing, K. Shi, W. Fang, H. Yu, G. Wang, ACS Appl. Mater. Interfaces 2020, 12, 50135.

[126]

L. Dong, Y. Chen, F. Zhai, L. Tang, W. Gao, J. Tang, Y. Feng, W. Feng, J. Mater. Chem. A 2020, 8, 18668.

[127]

G. G. D Han, H. Li, J. C. Grossman, Nat. Commun. 2017, 8, 1446.

[128]

G. G. D Han, J. H. Deru, E. N. Cho, J. C. Grossman, Chem. Commun. 2018, 54, 10722.

[129]

L. Fei, Y. Yin, M. Yang, S. Zhang, C. Wang, Energy Storage Mater. 2021, 42, 636.

[130]

H. Liu, J. Tang, L. Dong, H. Wang, T. Xu, W. Gao, F. Zhai, Y. Feng, W. Feng, Adv. Funct. Mater. 2021, 31, 2008496.

[131]

K. Wang, H. Yu, J. Gao, Y. Feng, W. Feng, J. Mater. Chem. C 2024, 12, 3811.

RIGHTS & PERMISSIONS

2024 The Author(s). Smart Molecules published by John Wiley & Sons Australia, Ltd on behalf of Dalian University of Technology.

AI Summary AI Mindmap
PDF

204

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/