Anchoring group regulation in semiconductor/molecular complex hybrid photoelectrode for photoelectrochemical water splitting

Xiangyan Chen , Fujun Niu , Tongxiang Ma , Qingyu Li , Shaopeng Wang , Shaohua Shen

Smart Molecules ›› 2025, Vol. 3 ›› Issue (2) : e20240056

PDF
Smart Molecules ›› 2025, Vol. 3 ›› Issue (2) : e20240056 DOI: 10.1002/smo.20240056
REVIEW ARTICLE

Anchoring group regulation in semiconductor/molecular complex hybrid photoelectrode for photoelectrochemical water splitting

Author information +
History +
PDF

Abstract

Rational interface engineering via regulating the anchoring groups between molecular catalysts and light-absorbing semiconductors is essential and emergent to stabilize the semiconductor/molecular complex interaction and facilitate the photocarriers transport, thus realizing highly active and stable photoelectrochemical (PEC) water splitting. In this mini review, following a showcasing of the fundamental details of hybrid PEC systems containing semiconductor photoelectrodes and molecular catalysts for water splitting, the state-of-the-art progress of anchoring group regulation at semiconductor/molecular complex interface for efficient and stable PEC water splitting, as well as its effect on charge transfer kinetics, are comprehensively reviewed. Finally, potential research directions aimed at building high-efficiency hybrid PEC water splitting systems are summarized.

Keywords

anchoring groups / hybrid systems / molecular catalysts / photoelectrochemical water splitting / semiconductor photoelectrodes

Cite this article

Download citation ▾
Xiangyan Chen, Fujun Niu, Tongxiang Ma, Qingyu Li, Shaopeng Wang, Shaohua Shen. Anchoring group regulation in semiconductor/molecular complex hybrid photoelectrode for photoelectrochemical water splitting. Smart Molecules, 2025, 3(2): e20240056 DOI:10.1002/smo.20240056

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, J. Tan, Chem. Soc. Rev. 2017, 46, 4645.

[2]

W. Wang, M. Xu, X. Xu, W. Zhou, Z. Shao, Angew. Chem. Int. Ed. 2020, 59, 136.

[3]

T. S. Teitsworth, D. J. Hill, S. R. Litvin, E. T. Ritchie, J.-S. Park, J. P. Custer, , A. D. Taggart, S. R. Bottum, S. E. Morley, S. Kim, J. R. McBride, J. M. Atkin, J. F. Cahoon, Nature 2023, 614, 270.

[4]

J. Wang, G. Ni, W. Liao, K. Liu, J. Chen, F. Liu, Z. Zhang, M. Jia, J. Li, J. Fu, E. Pensa, L. Jiang, Z. Bian, E. Cortés, M. Liu, Angew. Chem. Int. Ed. 2023, 62, e202217026.

[5]

Y. Zhang, L. Xu, B. Liu, X. Wang, T. Wang, X. Xiao, S. Wang, W. Huang, ACS Catal. 2023, 13, 5938.

[6]

H. Lin, X. Long, Y. An, S. Yang, J. Chem. Phys. 2020, 152, 214704.

[7]

X. Kong, Y. Zhang, H. Zhang, L. Zhang, J. Huang, Y. Wang, Q. Feng, ACS Appl. Energy Mater. 2023, 6, 11654.

[8]

X. Chen, Z. Yin, K. Cao, S. Shen, ACS Mater. Lett. 2022, 4, 1381.

[9]

Y. Fu, Y.-R. Lu, F. Ren, Z. Xing, J. Chen, P. Guo, W.-F. Pong, C.-L. Dong, L. Zhao, S. Shen, Sol. RRL 2020, 4, 1900349.

[10]

S. Cao, Z. Zhang, Q. Liao, Z. Kang, Y. Zhang, Energy Technol. 2021, 9, 2000819.

[11]

P. Choubey, R. Rani, M. Basu, ACS Appl. Nano Mater

[12]

S. Wang, X. Wang, B. Liu, Z. Guo, K. Ostrikov, L. Wang, W. Huang, Nanoscale 2021, 13, 17989.

[13]

W. Zhang, L. Song, J. Cen, M. Liu, J. Phys. Chem. C 2019, 123, 20730.

[14]

Z. Wang, L. Zhang, T. U. Schglli, Y. Bai, S. A. Monny, A. Du, L. Wang, Angew. Chem. Int. Ed. 2019, 58, 17604.

[15]

Z. N. Zahran, Y. Tsubonouchi, E. A. Mohamed, M. Yagi, ChemSusChem 2019, 12, 1775.

[16]

R. Wang, Y. Kuwahara, K. Mori, H. Yamashita, ChemCatChem 2021, 13, 5058.

[17]

X. Liang, X. Cao, W. Sun, Y. Ding, ChemCatChem 2019, 11, 6190.

[18]

F. Niu, D. Wang, F. Li, Y. Liu, S. Shen, T. J. Meyer, Adv. Energy Mater. 2019, 1900399.

[19]

Z. Sun, C. Xu, Z. Li, F. Guo, B. Liu, J. Liu, J. Zhou, Z. Yu, X. He, D. Jiang, New J. Chem. 2022, 46, 9111.

[20]

Y. Wang, F. Li, X. Zhou, F. Yu, J. Du, L. Bai, L. Sun, Angew. Chem. Int. Ed. 2017, 56, 6911.

[21]

L. Gong, P. Zhang, G. Liu, Y. Shan, M. Wang, J. Mater. Chem. A 2021, 9, 12140.

[22]

R. Wang, Y. Kuwahara, K. Mori, C. Louis, Y. Bu, H. Yamashita, J. Mater. Chem. A 2020, 8, 21613.

[23]

X. Chen, Y. Fu, T. Kong, Y. Shang, F. Niu, Z. Diao, S. Shen, Eur. J. Inorg. Chem. 2019, 2019, 2078.

[24]

L. Wu, M. Eberhart, A. Nayak, M. K. Brennaman, B. Shan, T. J. Meyer, J. Am. Chem. Soc. 2018, 140, 15062.

[25]

P. Wang, N. Le, J. D. McCool, B. Donnadieu, A. N. Erickson, C. E. Webster, X. Zhao, J. Am. Chem. Soc. 2024, 146, 9493.

[26]

I. N. Cloward, T. Liu, J. Rose, T. Jurado, A. G. Bonn, M. B. Chambers, C. L. Pitman, M. A. ter Horst, A. J. M. Miller, Nat. Chem. 2024, 16, 709.

[27]

B. L. Wadsworth, A. M. Beiler, D. Khusnutdinova, S. I. Jacob, G. F. Moore, ACS Catal. 2016, 6, 8048.

[28]

X. Yan, K. Sakai, H. Ozawa, ACS Catal. 2023, 13, 13456.

[29]

Y. Shao, J. M. de Ruiter, H. J. M. de Groot, F. Buda, J. Phys. Chem. C 2019, 123, 21403.

[30]

I. Gradzka-Kurzaj, Q. Meng, B. J. J. Timmer, O. Kravchemko, B. Zhang, M. Gierszewski, M. Gierszeski, M. Ziolek, Inter. J. Hydro. 2020, 45, 15129.

[31]

M. Kan, D. Xue, A. Jia, X. Qian, D. Yue, J. Jia, Y. Zhao, Appl. Catal. B Environ. 2018, 225, 504.

[32]

T. Wang, H. Cao, M. Huang, P. Du, J. Phys. Chem. C 2021, 125, 23153.

[33]

K. J. Jenewein, Y. Wang, T. Liu, T. McDonald, M. Zlatar, N. Kulyk, V. B. Llorente, A. Kormányos, D. Wang, S. Cherevko, ChemSusChem 2023, 16, e202202319.

[34]

M. Huang, Z. Huang, H. Zhu, Nano Energy 2020, 70, 104487.

[35]

Y. Hou, B. L. Abrams, P. C. K. Vesborg, M. E. Björketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Nørskov, I. Chorkendorff, Nat. Mater. 2011, 10, 434.

[36]

W. Zhou, F. Niu, S. S. Mao, S. Shen, Appl. Catal. B Environ. 2018, 220, 362.

[37]

R. Matheu, I. A. Moreno-Hernandez, X. Sala, H. B. Gray, B. S. Brunschwig, A. Llobet, N. S. Lewis, J. Am. Chem. Soc. 2017, 139, 11345.

[38]

H. J. Kim, J. Seo, M. J. Rose, ACS Appl. Mater. Interfaces 2016, 8, 1061.

[39]

A. Singh, N. Choudhary, S. M. Mobin, P. Mathur, J. Organomet. Chem. 2021, 940, 121769.

[40]

X. Wan, L. Wang, C.-L. Dong, G. M. Rodriguez, Y.-C. Huang, A. Macchioni, S. Shen, ACS Energy Lett. 2018, 3, 1613.

[41]

H.-Y. Liu, C. C. Cody, J. A. Jacob-Dolan, R. H. Crabtree, G. W. Brudvig, ACS Energy Lett. 2020, 5, 3195.

[42]

M. Wang, Y. Yang, J. Shen, J. Jiang, L. Sun, Sustain. Energy Fuels 2017, 1, 1641.

[43]

K. Tang, J.-Y. Shao, Y.-W. Zhong, Chem. Commun. 2023, 59, 6072.

[44]

S. Berardi, S. Drouet, L. Francas, C. Gimbert-Surinach, M. Guttentag, C. Richmond, T. Stolla, A. Llobet, Chem. Soc. Rev. 2014, 43, 7501.

[45]

F. Li, K. Fan, B. Xu, E. Gabrielsson, Q. Daniel, L. Li, L. Sun, J. Am. Chem. Soc. 2015, 137, 9153.

[46]

T. Tian, C. Dong, X. Liang, M. Yue, Y. Ding, J. Catal. 2019, 377, 684.

[47]

R. Wang, Y. Kuwahara, K. Mori, Y. Bu, H. Yamashita, Catal. Sci. Technol. 2020, 10, 1714.

[48]

H. Tong, Y. Jiang, Q. Zhang, J. Li, W. Jiang, D. Zhang, N. Li, L. Xia, ChemSusChem 2017, 10, 3268.

[49]

S. Chandrasekaran, T. J. Macdonald, Y. J. Mange, N. H. Voelcker, T. Nann, J. Mater. Chem. A 2014, 2, 9478.

[50]

T. Nann, S. K. Ibrahim, P.-M. Woi, S. Xu, J. Ziegler, C. J. Pickett, Angew. Chem. Int. Ed. 2010, 49, 1574.

[51]

X. Chen, H. Ren, W. Peng, H. Zhang, J. Lu, L. Zhuang, J. Phys. Chem. C 2014, 118, 20791.

[52]

T. E. Rosser, M. A. Gross, Y.-H. Laia, E. Reisner, Chem. Sci. 2016, 7, 4024.

[53]

M. Sarnowska, K. Bienkowski, P. J. Barczuk, R. Solarska, J. Augustynski, Adv. Energy Mater. 2016, 6, 1600526.

[54]

Y. Shao, H. J. M. de Groot, F. Buda, ChemSusChem 2021, 14, 3155.

[55]

U. T. Mueller-Westerhoff, A. Nazzal, G. S. Wilson, S. Mahling, M. Goebl, K. D. Asmus, J. Am. Chem. Soc. 1984, 106, 5382.

[56]

A. M. Beiler, D. Khusnutdinova, B. L. Wadsworth, G. F. Moore, Inorg. Chem. 2017, 56, 12178.

[57]

Y. Shang, F. Niu, S. Shen, Chin. J. Catal. 2018, 39, 502.

[58]

S. Liu, Y.-J. Lei, Z.-J. X, Y.-B. Lu, H.-Y. Wang, J. Photochem. Photobio. A: Chem 2018, 355, 141.

[59]

X. Ding, Y. Gao, L. Zhang, Z. Yu, J. Liu, L. Sun, Electrochim. Acta 2014, 149, 337.

[60]

X. Chen, X. Ren, Z. Liu, L. Zhuang, J. Lu, Electrochem. Commun. 2013, 27, 148.

[61]

K. L. Materna, R. H. Crabtree, G. W. Brudvig, Chem. Soc. Rev. 2017, 46, 6099.

[62]

G. F. Moore, J. D. Blakemore, R. L. Milot, J. F. Hull, H. eun Song, L. Cai, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig, Energy Environ. Sci. 2011, 4, 2389.

[63]

B. D. Sherman, Y. Xie, M. V. Sheridan, D. Wang, D. W. Shaffer, T. J. Meyer, J. J. Concepcion, ACS Energy Lett. 2017, 2, 124, haoba.

[64]

B. J. Brennan, C. Koenigsmann, K. L. Materna, P. M. Kim, M. Koepf, R. H. Crabtree, C. A. Schmuttenmaer, G. W. Brudvig, J. Phys. Chem. C 2016, 120, 12495.

[65]

T. P. Brewster, S. J. Konezny, S. W. Sheehan, L. A. Martini, C. A. Schmuttenmaer, V. S. Batista, R. H. Crabtree, Inorg. Chem. 2013, 52, 6752.

[66]

L. A. Martini, G. F. Moore, R. L. Milot, L. Z. Cai, S. W. Sheehan, C. A. Schmuttenmaer, G. W. Brudvig, R. H. Crabtree, J. Phys. Chem. C 2013, 117, 14526.

[67]

K. L. Materna, B. Rudshteyn, B. J. Brennan, M. H. Kane, A. J. Bloomfield, D. L. Huang, D. Y. Shopov, V. S. Batista, R. H. Crabtree, G. W. Brudvig, ACS Catal. 2016, 6, 5371.

[68]

B. M. Klepser, B. M. Bartlett, J. Am. Chem. Soc. 2014, 136, 1694.

[69]

K. Takijiri, K. Morita, T. Nakazono, K. Sakai, H. Ozawa, Chem. Commun. 2017, 53, 3042.

[70]

M. Watanabe, S. Sun, T. Ishihara, T. Kamimura, M. Nishimura, F. Tani, ACS Appl. Energy Mater. 2018, 1, 6072.

[71]

Y. Zhu, D. Wang, W. Ni, G. G. Gurzadyan, L. Sun, T. J. Meyer, F. Li, J. Mater. Chem. A 2022, 10, 9121.

[72]

T. Luo, X.-A. Li, C.-J. Bai, C.-Y. Lv, J.-F. Huang, J.-M. Liu, ACS Appl. Energy Mater. 2021, 4, 14671.

[73]

Y. Zhu, D. Wang, Q. Huang, J. Du, L. Sun, F. Li, T. J. Meyer, Nat. Commun. 2020, 11, 4610.

[74]

Y. Liu, Y. Jiang, F. Li, F. Yu, W. Jiang, L. Xia, J. Mater. Chem. A 2018, 6, 10761.

[75]

J.-X. Jian, J.-X. Liao, M.-H. Zhou, M.-M. Yao, Y.-J. Chen, X.-W. Liang, C.-P. Liu, Q.-X. Tong, Chem. Eur J. 2022, 28, e202201520.

[76]

G. F. Moore, I. D. Sharp, J. Phys. Chem. Lett. 2013, 4, 568.

[77]

A. Krawicz, J. Yang, E. Anzenberg, J. Yano, I. D. Sharp, G. F. Moore, J. Am. Chem. Soc. 2013, 135, 11861.

[78]

D. Cedeno, A. Krawicz, P. Doak, M. Yu, J. B. Neaton, G. F. Moore, J. Phys. Chem. Lett. 2014, 5, 3222.

[79]

D. Khusnutdinova, A. M. Beiler, B. L. Wadsworth, S. I. Jacob, G. F. Moore, Chem. Sci. 2017, 8, 253.

[80]

J. Gu, Y. Yan, J. L. Young, K. X. Steirer, N. R. Neale, J. A. Turner, Nat. Mater. 2016, 15, 456.

[81]

J. J. Leung, J. Warnan, D. H. Nam, J. Z. Zhang, J. Willkomma, E. Reisner, Chem. Sci. 2017, 8, 5172.

[82]

B. Liu, J. Li, H.-L. Wu, W.-Q. Liu, X. Jiang, Z.-J. Li, B. Chen, C.-H. Tung, L.-Z. Wu, ACS Appl. Mater. Interfaces 2016, 8, 18577.

[83]

E. Gabrielsson, H. Tian, S. K. Eriksson, J. Gao, H. Chen, F. Li, J. Oscarsson, J. Sun, H. Rensmo, L. Kloo, A. Hagfeldt, L. Sun, Chem. Commun. 2015, 51, 3858.

[84]

K. Fan, F. Li, L. Wang, Q. Daniel, H. Chen, E. Gabrielsson, J. Sun, L. Sun, ChemSusChem 2015, 8, 3242.

[85]

C. Nie, C. Liu, L. Gong, M. Wang, J. Mater. Chem. A 2021, 9, 234.

[86]

K. Tang, J.-Y. Shao, Y. Yan, Y.-W. Zhong, Langmuir 2024, 40, 6244.

[87]

A. Reynal, J. Willkomm, N. M. Muresan, F. Lakadamyali, M. Planells, E. Reisner, J. R. Durrant, Chem. Commun. 2014, 50, 12768.

[88]

L. Gong, H. Yin, C. Nie, X. Sun, X. Wang, M. Wang, ACS Appl. Mater. Interfaces 2019, 11, 34010.

[89]

Z. Ji, G. Natu, Z. Huang, Y. Wu, Energy Environ. Sci. 2011, 4, 2818.

[90]

P. Gao, H. N. Tsao, C. Yi, M. Grätzel, M. K. Nazeeruddin, Adv. Energy Mater. 2014, 4, 1301485.

[91]

L. Gong, H. Yin, R. Tian, Y. Li, X. Wang, M. Wang, Adv. Mater. Inter. 2021, 8, 2100182.

[92]

K. E. Dalle, J. Warnan, J. J. Leung, B. Reuillard, I. S. Karmel, E. Reisner, Chem. Rev. 2019, 119, 2752.

[93]

S. M. Lauinger, B. D. Piercy, W. Li, Q. Yin, D. L. Collins-Wildman, E. N. Glass, M. D. Losego, D. Wang, Y. V. Geletii, C. L. Hill, ACS Appl. Mater. Interfaces 2017, 9, 35048.

[94]

S. Chandrasekaran, N. Kaeffer, L. Cagnon, D. Aldakov, J. Fize, G. Nonglaton, F. Baleras, P. Mailleyd, V. Artero, Chem. Sci. 2019, 10, 4469.

[95]

X. Zhang, Y. Lyu, C. Chen, J. Zheng, S. P. Jiang, S. Wang, Proc. Natl. Acad. Sci. U. S. A. 2024, 121, e2311326121.

[96]

C. W. S. Yeung, V. Andrei, T. H. Lee, J. R. Durrant, E. Reisner, Adv. Mater. 2024, 36, 2404110.

[97]

C. H. Kim, J. Kim, F. Hollmann, C. B. Park, Appl. Catal. B Environ. 2023, 336, 122925.

RIGHTS & PERMISSIONS

2024 The Author(s). Smart Molecules published by John Wiley & Sons Australia, Ltd on behalf of Dalian University of Technology.

AI Summary AI Mindmap
PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/