Rational design of deep eutectic solvents with low viscosities and multiple active sites for efficient recognition and selective capture of NH3

Lu Zheng , Saisai Ju , Siqi Fang , Hongwei Zhang , Zhenping Cai , Kuan Huang , Lilong Jiang

Smart Molecules ›› 2025, Vol. 3 ›› Issue (1) : e20240045

PDF
Smart Molecules ›› 2025, Vol. 3 ›› Issue (1) : e20240045 DOI: 10.1002/smo.20240045
RESEARCH ARTICLE

Rational design of deep eutectic solvents with low viscosities and multiple active sites for efficient recognition and selective capture of NH3

Author information +
History +
PDF

Abstract

Efficient recognition and selective capture of NH3 is not only beneficial for increasing the productivity of the synthetic NH3 industry but also for reducing air pollution. For this purpose, a group of deep eutectic solvents (DESs) consisting of glycolic acid (GA) and phenol (PhOH) with low viscosities and multiple active sites was rationally designed in this work. Experimental results show that the GA + PhOH DESs display extremely fast NH3 absorption rates (within 51 s for equilibrium) and high NH3 solubility. At 313.2 K, the NH3 absorption capacities of GA + PhOH (1:1) reach 6.75 mol/kg (at 10.7 kPa) and 14.72 mol/kg (at 201.0 kPa). The NH3 solubility of GA + PhOH DESs at low pressures were minimally changed after more than 100 days of air exposure. In addition, the NH3 solubility of GA + PhOH DESs remain highly stable in 10 consecutive absorption-desorption cycles. More importantly, NH3 can be selectively captured by GA + PhOH DESs from NH3/CO2/N2 and NH3/N2/H2 mixtures. 1H-NMR, Fourier transform infrared and theoretical calculations were performed to reveal the intrinsic mechanism for the efficient recognition of NH3 by GA + PhOH DESs.

Keywords

deep eutectic solvent / low viscosity / multiple active site / NH3 recognition / selective capture

Cite this article

Download citation ▾
Lu Zheng, Saisai Ju, Siqi Fang, Hongwei Zhang, Zhenping Cai, Kuan Huang, Lilong Jiang. Rational design of deep eutectic solvents with low viscosities and multiple active sites for efficient recognition and selective capture of NH3. Smart Molecules, 2025, 3(1): e20240045 DOI:10.1002/smo.20240045

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. Li, Z. Wang, C. Wang, J. Huang, Y. Feng, W. Shen, M. Zhou, L. Yang, Chemosphere 2022, 303, 134944.

[2]

L. Liu, G. Jiang, D. Wu, W. Ma, H. Zhang, S. Liang, C. Huang, Fibers Poly. 2024, 25, 181.

[3]

N. D. Afify, M. B. Sweatman, Chem. Eng. J. Adv. 2024, 18, 100612.

[4]

V. Negro, M. Noussan, D. Chiaramonti, Energies 2023, 16, 6192.

[5]

F. Tian, N. Zhou, W. Chen, J. Zhan, L. Tang, M. Wu, Adv. Sustain. Syst. 2024, 8, n/a.

[6]

M. A. Sutton, J. W. Erisman, F. Dentener, D. Moller, Environ. Pollut. 2008, 156, 583.

[7]

M. Van Damme, L. Clarisse, S. Whitburn, J. Hadji-Lazaro, D. Hurtmans, C. Clerbaux, P. F. Coheur, Nature 2018, 564, 99.

[8]

L. Zhang, H. Dong, S. Zeng, Z. Hu, S. Hussain, X. Zhang, Ind. Eng. Chem. Res. 2021, 60, 6908.

[9]

A. Gao, J. Liang, M. Jing, X. Song, A. Hou, K. Xie, Smart Mol. 2024, 2, e20230030.

[10]

Y. Ma, J. Zhang, W. Wu, Z. Cai, Y. Cao, K. Huang, L. Jiang, Chem. Eng. Sci. 2022, 253, 117516.

[11]

J. Wang, R. Wang, Molecules 2024, 29, 3279.

[12]

K. Huang, X. M. Zhang, L.-S. Zhou, D. J. Tao, J. P. Fan, Chem. Eng. Sci. 2017, 173, 253.

[13]

A. Yokozeki, M. B. Shiflett, Ind. Eng. Chem. Res. 2007, 46, 1605.

[14]

Z. Li, X. Zhang, H. Dong, X. Zhang, H. Gao, S. Zhang, J. Li, C. Wang, RSC Adv. 2015, 5, 81362.

[15]

S. Zeng, L. Liu, D. Shang, J. Feng, H. Dong, Q. Xu, X. Zhang, S. Zhang, Green Chem. 2018, 20, 2075.

[16]

Z. Cai, J. Zhang, Y. Ma, W. Wu, Y. Cao, K. Huang, L. Jiang, AIChE J. 2022, 68, e17632.

[17]

I. Wazeer, M. K. Hadj-Kali, I. M. Al-Nashef, Molecules 2021, 26, 75.

[18]

F. Liu, W. Chen, J. Mi, J. Y. Zhang, X. Kan, F. Y. Zhong, K. Huang, A. M. Zheng, L. Jiang, AIChE J. 2019, 65, e16574.

[19]

X. Wu, N. N. Cheng, H. Jiang, W. T. Zheng, Y. Chen, K. Huang, F. Liu, Sep. Purif. Technol. 2021, 276, 119313.

[20]

C. Li, Z. Cai, Y. Ma, Y. Cao, K. Huang, L. Jiang, J. Chem. Thermodyn. 2022, 167, 106713.

[21]

J. Zhang, L. Zheng, Y. Ma, Z. Cai, Y. Cao, K. Huang, L. Jiang, Energy Fuels 2022, 36, 14516.

[22]

J. Y. Zhang, K. Huang, J. Chem. Thermodyn. 2019, 139, 105883.

[23]

W. J. Jiang, J. B. Zhang, Y. T. Zou, H. L. Peng, K. Huang, ACS Sustain. Chem. Eng. 2020, 8, 13408.

[24]

L. Zheng, X. Zhang, Q. Li, Y. Ma, Z. Cai, Y. Cao, K. Huang, L. Jiang, Sep. Purif. Technol. 2023, 309, 123136.

[25]

F. Y. Zhong, H. L. Peng, D. J. Tao, P. K. Wu, J. P. Fan, K. Huang, ACS Sustain. Chem. Eng. 2019, 7, 3258.

[26]

N. N. Cheng, Z. L. Li, H. C. Lan, W. L. Xu, K. Huang, AIChE J. 2022, 68, e17660.

[27]

X. Sun, Q. Wang, S. Wu, X. Zhao, L. Wei, K. Li, J. Hao, L. Wei, S. Zhai, Q. An, Int. J. Hydrogen Energy 2022, 47, 16121.

[28]

F. Y. Zhong, L. Zhou, J. Shen, Y. Liu, J. P. Fan, K. Huang, ACS Sustain. Chem. Eng. 2019, 7, 14170.

[29]

L. Zheng, L. Shi, Q. Li, H. Zhang, Z. Cai, K. Huang, L. Jiang, Chem. Eng. Sci. 2024, 292, 120023.

[30]

P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.

[31]

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

[32]

J. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, WIREs Comput. Mol. Sci. 2014, 4, 15.

[33]

P. Y. Wang, T. Li, J. Pan, Z. Q. Ling, F. G. Diao, J. P. Sun, G. Y. Wang, X. F. Zhu, Int. J. Thermophys. 2024, 45, 7.

[34]

M. De Villiers, D. E. Wurster, K. Narsai, J. Cosmet. Sci. 1997, 48, 165.

[35]

B. Liu, J. Tian, Ind. Eng. Chem. Res. 2021, 60, 11600.

[36]

P. J. Cole, J. Chem. Eng. Data. 1960, 5, 367.

[37]

P. Shao, W. Xiong, P. Chen, F. Liu, T. Chen, T. Zhao, Sep. Purif. Technol. 2024, 330, 125390.

[38]

J. Zhang, L. Zheng, S. Fang, H. Zhang, Z. Cai, K. Huang, L. Jiang, Chin. J. Chem. Eng. 2024, 67, 97.

[39]

Y. Ma, J. Zhang, K. Huang, L. Jiang, J. Mol. Liq. 2021, 337, 116463.

[40]

Y. Cao, J. Zhang, Y. Ma, W. Wu, K. Huang, L. Jiang, ACS Sustain. Chem. Eng. 2021, 9, 7352.

[41]

W. Q. Gong, M. S. Sun, J. Li, Q. P. Gong, Y. X. Fu, Y. Zhou, D. J. Tao, J. Mol. Liq. 2024, 400, 124505.

[42]

K. Li, K. Zong, Z. Zhou, D. Deng, Sep. Purif. Technol. 2021, 279, 119763.

[43]

D. Deng, X. Deng, X. Duan, L. Gong, J. Mol. Liq. 2021, 324, 114719.

[44]

X. X. Sun, Q. H. Wang, S. H. Wu, X. Y. Zhao, L. G. Wei, K. L. Li, J. A. Hao, L. Wei, S. R. Zhai, Q. D. An, Int. J. Hydrogen Energy 2022, 47, 16121.

[45]

J. Wang, S. Zeng, F. Huo, D. Shang, H. He, L. Bai, X. Zhang, J. Li, J. Clean. Prod. 2019, 206, 661.

[46]

Z. L. Li, F. Y. Zhong, L. S. Zhou, Z. Q. Tian, K. Huang, Ind. Eng. Chem. Res. 2020, 59, 2060.

[47]

L. Yuan, H. Gao, H. Jiang, S. Zeng, T. Li, B. Ren, X. Zhang, J. Mol. Liq. 2021, 323, 114601.

[48]

D. Deng, B. Gao, C. Zhang, X. Duan, Y. Cui, J. Ning, Chem. Eng. J. 2019, 358, 936.

[49]

O. V. Kazarina, A. N. Petukhov, A. V. Vorotyntsev, M. E. Atlaskina, A. A. Atlaskin, A. S. Kazarin, A. A. Golovacheva, N. A. Sedova, A. N. Markov, S. S. Suvorov, A. V. Barysheva, I. V. Vorotyntsev, Fluid Phase Equilib. 2023, 568, 113736.

[50]

Y. Li, M. C. Ali, Q. Yang, Z. Zhang, Z. Bao, B. Su, H. Xing, Q. Ren, ChemSusChem 2017, 10, 3368.

[51]

Q. H. Wang, H. Wen, Y. Wang, Z. W. Li, J. G. Hao, L. Wei, S. R. Zhai, Z. Y. Xiao, Q. D. An, Int. J. Hydrogen Energy 2024, 50, 1489.

[52]

M. Zheng, Z. Yan, X. Hu, Z. Tu, Y. Wu, Ind. Eng. Chem. Res. 2023, 62, 20381.

[53]

Z. Y. Zhou, Y. Cao, K. Zong, D. S. Deng, J. Mol. Liq. 2023, 389, 122874.

[54]

P. Li, D. Shang, W. Tu, S. Zeng, Y. Nie, L. Bai, H. Dong, X. Zhang, Sep. Purif. Technol. 2020, 248, 117087.

[55]

Q. Luo, J. Hao, L. Wei, S. Zhai, Z. Xiao, Q. An, Sep. Purif. Technol. 2021, 260, 118240.

[56]

L. Yuan, X. Zhang, B. Ren, Y. Yang, Y. Bai, L. Bai, H. Gao, S. Zeng, J. Chem. Technol. Biotechnol. 2020, 95, 1815.

[57]

X. Q. Sun, G. L. Li, S. J. Zeng, L. Yuan, L. Bai, X. P. Zhang, Sep. Purif. Technol. 2023, 307, 122825.

[58]

T. T. Hu, F. Liu, S. Dou, L. B. Zhong, X. Cheng, Z. D. Shao, Y. M. Zheng, Chem. Eng. J. 2022, 443, 136357.

[59]

D. W. Kim, D. W. Kang, M. Kang, D. S. Choi, H. Yun, S. Y. Kim, S. M. Lee, J. H. Lee, C. S. Hong, J. Am. Chem. Soc. 2022, 144, 9672.

[60]

S. Zeng, J. Wang, P. Li, H. Dong, H. Wang, X. Zhang, X. Zhang, Chem. Eng. J. 2019, 370, 81.

[61]

C. Tan, Z. M. Li, M. S. Sun, H. Guan, Y. Zhou, D. J. Tao, Ind. Eng. Chem. Res. 2023, 62, 1542.

[62]

I. Matito-Martos, A. Martin-Calvo, C. O. Ania, J. B. Parra, J. M. Vicent-Luna, S. Calero, Chem. Eng. J. 2020, 387, 124062.

[63]

Y. Chen, X. Zhang, K. Ma, Z. Chen, X. Wang, J. Knapp, S. Alayoglu, F. Wang, Q. Xia, Z. Li, T. Islamoglu, O. K. Farha, ACS Appl. Nano Mater. 2019, 2, 6098.

[64]

Y. Chen, Y. Wang, C. Yang, S. Wang, J. Yang, J. Li, ACS Sustain. Chem. Eng. 2017, 5, 5082.

[65]

C. Marsh, X. Han, J. Li, Z. Lu, S. P. Argent, I. da Silva, Y. Cheng, L. L. Daemen, A. J. Ramirez-Cuesta, S. P. Thompson, A. J. Blake, S. Yang, M. Schroder, J. Am. Chem. Soc. 2021, 143, 6586.

[66]

D. W. Kang, M. Kang, M. Moon, H. Kim, S. Eom, J. H. Choe, W. R. Lee, C. S. Hong, Chem. Sci. 2018, 9, 6871.

[67]

I. F. Silva, I. F. Teixeira, W. P. Barros, C. B. Pinheiro, J. D. Ardisson, G. M. do Nascimento, N. A. Pradie, A. P. C. Teixeira, H. O. Stumpf, J. Mater. Chem. A 2019, 7, 15225.

[68]

T. N. Nguyen, I. M. Harreschou, J. H. Lee, K. C. Stylianou, D. W. Stephan, Chem. Commun. 2020, 56, 9600.

[69]

S. Moribe, Z. Chen, S. Alayoglu, Z. H. Syed, T. Islamoglu, O. K. Farha, ACS Mater. Lett. 2019, 1, 476.

[70]

C. H. Ho, C. Y. Shieh, C. L. Tseng, Y. K. Chen, J. L. Lin, J. Catal. 2009, 261, 150.

[71]

Y. Cao, X. Zhang, S. Zeng, Y. Liu, H. Dong, C. Deng, AIChE J. 2020, 66, e16253.

[72]

M. B. McBride, K. H. Kung, Environ. Toxicol. Chem. 1991, 10, 441.

[73]

J. Zhang, Y. Ma, W. Wu, Z. Cai, Y. Cao, K. Huang, L. Jiang, Chem. Eng. J. 2022, 448, 137640.

[74]

D. Cao, Z. Li, Z. Wang, H. Wang, S. Gao, Y. Wang, Y. Shi, J. Qiu, Y. Zhao, J. Wang, ACS Sustain. Chem. Eng. 2021, 9, 16363.

[75]

Y. Liu, T. Gu, X. Weng, Y. Wang, Z. Wu, H. Wang, J. Phys. Chem. C 2012, 116, 16582.

RIGHTS & PERMISSIONS

2025 The Author(s). Smart Molecules published by John Wiley & Sons Australia, Ltd on behalf of Dalian University of Technology.

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/