Development of a novel Cu (I) π-complexation adsorbent for ultra-deep desulfurization from a carbon dioxide stream

Huating Ju , Yongchun Zhang , Jikai Zhang , Ziqi Yu , Yige Zhang , Xiongfu Zhang , Xinwen Guo , Jiaxu Liu , Qing Mao , Qi Liu , Yiming Zhao , Tianqinji Qi , Xiao Jiang , Zhen Guo , Shaoyun Chen

Smart Molecules ›› 2025, Vol. 3 ›› Issue (1) : e20240027

PDF
Smart Molecules ›› 2025, Vol. 3 ›› Issue (1) : e20240027 DOI: 10.1002/smo.20240027
RESEARCH ARTICLE

Development of a novel Cu (I) π-complexation adsorbent for ultra-deep desulfurization from a carbon dioxide stream

Author information +
History +
PDF

Abstract

Desulfurization technology is rather difficult and urgently needed for carbon dioxide (CO2) utilization in industry. A new Cu(I)-based adsorbent was synthesized and examined for the capacity of removing carbonyl sulfide (COS) from a CO2 stream in an effort to solve the competitive adsorption between CO2 and COS and to seek opportunity to advance adsorption capacity. A wide range of characterization techniques were used to investigate the physicochemical properties of the synthesized Cu(I) adsorbent featuring π-complexation and their correlations with the adsorption performance. Meanwhile, the first principal calculation software CP2K was used to develop an understanding of the adsorption mechanism, which can offer useful guidance for the adsorbent regeneration. The synthesized Cu(I) adsorbent, prepared by using copper citrate and citric acid on the ZSM-5 (SiO2/Al2O3 = 25) carrier, outperformed other adsorbents with varying formulations and carriers in adsorption capacities. Through optimization of the preparation and adsorption conditions for various adsorbents, the breakthrough adsorption capacity (Qb) for COS was further enhanced from 2.19 mg/g to 15.36 mg/g. The formed stable π-complex bonds between COS and Cu(I), as confirmed by density functional theory calculations, were verified by the significant improvement in the adsorption capacity after regeneration at 600°C. The above advantages render the novel synthesized Cu(I) adsorbent a promising candidate featuring cost-effectiveness, high efficacy and good regenerability for desulfurization from a CO2 stream.

Keywords

π-complexed adsorption / carbonyl sulfide / CO2 purification / Cu(I) adsorbent / desulfurization

Cite this article

Download citation ▾
Huating Ju, Yongchun Zhang, Jikai Zhang, Ziqi Yu, Yige Zhang, Xiongfu Zhang, Xinwen Guo, Jiaxu Liu, Qing Mao, Qi Liu, Yiming Zhao, Tianqinji Qi, Xiao Jiang, Zhen Guo, Shaoyun Chen. Development of a novel Cu (I) π-complexation adsorbent for ultra-deep desulfurization from a carbon dioxide stream. Smart Molecules, 2025, 3(1): e20240027 DOI:10.1002/smo.20240027

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WMO, World Meteorological Organization WMO Greenhouse Gas Bulletin, https://library.wmo.int/index.php?lvl=notice_display&id=21975#.ZF99YXZBzDc (accessed: May 2023).

[2]

United Nations Climate Change Paris Agreement – Status of Ratification, https://unfccc.int/process/the-paris-agreement/status-of-ratification (accessed: April 2023).

[3]

D. D. Song, T. Jiang, C. P. Rao, Int. J. Environ. Res. Public Health 2022, 19, 16853.

[4]

R. Neerup, I. A. Loge, K. Helgason, S. O. Snaebjoernsdottir, B. Sigfusson, J. B. Svendsen, N. T. Rosted, P. Blinksbjerg, J. Kappel, R. Rortveit, S. Polak, N. Felbab, R. Holmer, A. Arora, J. Andersen, B. B. Jensen, S. N. B. Villadsen, G. M. Kontogeorgis, P. L. Fosbol, Environ. Sci. Technol. 2022, 56, 17502.

[5]

R. T. J. Porter, M. Fairweather, M. Pourkashanian, R. M. Woolley, Int. J. Greenhouse Gas Control 2015, 36, 161.

[6]

K. Ji, Y. C. Zhang, H. Li, T. Q. J. Qi, X. J. Li, Q. Liu, S. Y. Chen, Sep. Purif. Technol. 2021, 275, 119221.

[7]

Q. Zhang, G. N. Han, X. Lian, S. Q. Yang, T. L. Hu, Molecules 2022, 27, 5929.

[8]

M. Raventós, S. Duarte, R. Alarcón, Food Sci. Technol. Int. 2002, 8, 269.

[9]

N. Foster, R. Mammucari, F. Dehghani, A. Barrett, K. Bezanehtak, E. Coen, G. Combes, L. Meure, A. Ng, H. L. Regtop, A. Tandya, Ind. Eng. Chem. Res. 2003, 42, 6476.

[10]

International Society of Beverage Technologists, Fountain Carbon Dioxide Quality & Food Safety Guideline, https://www.isbt.com/resources-guidelines-best-practices.asp (accessed: May 2023).

[11]

L. Fang, Master Thesis, Dalian University of Technology 2007.

[12]

H. H. Yi, C. C. Du, X. D. Zhang, S. Z. Zhao, X. Z. Xie, L. L. Miao, X. L. Tang, Ind. Eng. Chem. Res. 2021, 60, 18183.

[13]

X. Song, X. Chen, L. N. Sun, K. Li, X. Sun, C. Wang, P. Ning, Chem. Eng. J. 2020, 399, 125764.

[14]

L. J. Shen, G. J. Wang, X. X. Zheng, Y. N. Cao, Y. F. Guo, K. Lin, L. L. Jiang, Chin. J. Catal. 2017, 38, 1373.

[15]

H. Marsh, F. Rodriguez-Reinoso, Activated Carbon, Elsevier 2006.

[16]

W. ElMoudir, T. Supap, C. Saiwan, R. Idem, P. Tontiwachwuthikul, Carbon Manag. 2012, 3, 485.

[17]

R. T. Yang, Gas Separation by Adsorption Processes, Vol. 1, World Scientific 1997.

[18]

Y. X. Ma, X. Q. Wang, P. Ning, C. Cheng, K. Xu, F. Wang, Z. T. Bian, S. D. Yan, Chem. Eng. J. 2016, 290, 328.

[19]

M. W. Seo, Y. M. Yun, W. C. Cho, H. W. Ra, S. J. Yoon, J. G. Lee, Y. K. Kim, J. H. Kim, S. H. Lee, W. H. Eom, U. D. Lee, S. B. Lee, Energy 2014, 66, 56.

[20]

G. X. Wang, X. W. Huang, J. D. Ye, J. S. Wang, Y. H. Kong, Hubei Chem. Ind. 1995, 1, 24.

[21]

M. S. Liang, C. H. Li, H. X. Guo, K. C. Xie, J. L. Chu, J. Fuel, Chem. Tech. 2003, 31, 149.

[22]

Y. J. Wang, S. Y. Chen, H. Chen, X. Z. Yuan, Y. C. Zhang, J. Energy Chem. 2013, 22, 902.

[23]

P. Kumar, C. Y. Sung, O. Muraza, M. Cococcioni, S. A. Hashimi, A. McCormick, M. Tsapatsis, Micr. Meso. Mat. 2011, 146, 127.

[24]

Z. F. Yang, Master Thesis, Jiangsu University of Science and Technology 2019.

[25]

M. B. Nguyen, L. H. T. Nguyen, H. T. Lai, H. V. Doan, N. Q. Tran, N. X. D. Mai, L. D. Tran, P. A. Krisbiantoro, K. C.-W. Wu, T. L. H. Doan, Chem. Eng. J. 2024, 497, 154479.

[26]

R. A. Bell, J. R. Kramer, Environ. Toxicol. Chem. 1999, 18, 9.

[27]

I. Ahmed, S. H. Jhung, Chem. Eng. J. 2015, 279, 327.

[28]

Y. Yin, Z. H. Wen, X. Q. Liu, L. Shi, A. H. Yuan, J. Porous Mat. 2018, 25, 1513.

[29]

F. Gao, Ph.D. Thesis, Tianjin University 2017.

[30]

A. J. Hernandez-Maldonado, F. H. Yang, G. Qi, R. T. Yang, Appl. Catal., B. 2005, 56, 111.

[31]

Z. B. Zhang, M.Eng. Thesis, Dalian University of Technology, CN 2021.

[32]

P. K. Behara, M. Dupuis, Phys. Chem. Chem. Phys. 2020, 22, 10609.

[33]

N. Uras-Aytemiz, F. M. Balci, J. P. Devlin, J. Chem. Phys. 2019, 151, 194309.

[34]

L. B. Sun, Y. X. Li, S. S. Peng, J. K. Zhang, J. Wu, X. Q. Liu, Nat. Commun. 2020, 11, 3206.

[35]

A. Fatima, G. Khanum, A. Sharma, K. Garima, S. Savita, I. Verma, N. Siddiqui, S. Javed, J. Mol. Struct. 2022, 1249, 131571.

[36]

K. G. Wynnyk, B. Hojjati, P. Pirzadeh, R. A. Marriott, Adsorption 2017, 23, 149.

[37]

The CP2K Developers Group, About CP2K, http://www.cp2k.org/ (accessed: May 2023).

[38]

T. Lu, Q. X. Chen, Comput. Theor. Chem. 2021, 1200, 113249.

[39]

T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.

RIGHTS & PERMISSIONS

2025 The Author(s). Smart Molecules published by John Wiley & Sons Australia, Ltd on behalf of Dalian University of Technology.

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/