The controllable of BODIPY dimers without installing blocking groups as both fluorescence and singlet oxygen generators

Jianfang Cao , Tianci Zhang , Xinyu Chen , Xue Ma , Jiangli Fan

Smart Molecules ›› 2025, Vol. 3 ›› Issue (1) : e20240023

PDF
Smart Molecules ›› 2025, Vol. 3 ›› Issue (1) : e20240023 DOI: 10.1002/smo.20240023
RESEARCH ARTICLE

The controllable of BODIPY dimers without installing blocking groups as both fluorescence and singlet oxygen generators

Author information +
History +
PDF

Abstract

We compared a range of BODIPY dimer derivatives without installing blocking groups by optimizing geometry structures and analyzing energies, frontier molecular orbitals, Chole&Cele map, electron density difference, spin-orbit coupling (SOC) matrix and decay rate constants from excited states. The dihedral angles of the β-β-linked BODIPY dimer and the α-α-linked BODIPY dimer tend to flatten in the T1 state, which is detrimental to the occurrence of the intersystem crossing (ISC). Conversely, the dihedral angle of the meso-β-linked BODIPY dimer, the meso-meso-linked BODIPY dimer and α-γ-linked BODIPY dimer is within the range of 125°–143° in the T1 state, facilitating ISC and the generation of singlet oxygen. Notably, the transition from S1 to S0 involving lowest unoccupied molecular orbital to highest occupied molecular orbital with long-wavelength emission and moderate oscillator strength underpins the remarkable long emission peaks observed experimentally for α-γ-linked BODIPY dimer. Moreover, the apparent SOC matrix enhances the ISC process, resulting in a respectable efficiency in generating singlet oxygen for this dimer. In meso-β-linked BODIPY, meso-meso-linked BODIPY, and α-γ-linked BODIPY, the S1→T1 process is characterized by a significant charge transfer, specifically transitioning from the 1CT state to the 3LE state, indicative of a spin-orbit charge transfer ISC (SOCT-ISC) mechanism. The ability to regulate the photosensitivity of BODIPY dimers by adjusting the dihedral angle between the two units in the T1 state unveils new avenues for designing high-performance photosensitizers for both therapeutic and imaging applications.

Keywords

BODIPY dimers / density functional calculations / dual-functioning photosensitizers / spin-orbit coupling

Cite this article

Download citation ▾
Jianfang Cao, Tianci Zhang, Xinyu Chen, Xue Ma, Jiangli Fan. The controllable of BODIPY dimers without installing blocking groups as both fluorescence and singlet oxygen generators. Smart Molecules, 2025, 3(1): e20240023 DOI:10.1002/smo.20240023

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Ran, Y. Yuan, W. Xia, M. Li, Q. Yao, Z. Wang, L. Wang, X. Li, Y. Xu, X. Peng, Chem. Sci. 2020, 12, 1054.

[2]

M. Li, J. Xia, R. Tian, J. Wang, J. Fan, J. Du, S. Long, X. Song, J. W. Foley, X. Peng, J. Am. Chem. Soc. 2018, 140, 14851.

[3]

M. Li, Y. Shao, J. H. Kim, Z. Pu, X. Zhao, H. Huang, T. Xiong, Y. Kang, G. Li, K. Shao, J. Fan, J. W. Foley, J. S. Kim, X. Peng, J. Am. Chem. Soc. 2020, 142, 5380.

[4]

E. Avellanal-Zaballa, A. Prieto-Castaneda, C. Diaz-Norambuena, J. Banuelos, A. R. Agarrabeitia, I. Garcia-Moreno, S. de la Moya, M. J. Ortiz, Phys. Chem. Chem. Phys. 2021, 23, 11191.

[5]

S. Kaya, Y. A. Ismaiel, N. Kwon, G. Kim, J. L. Bila, J. Yoon, O. Seven, E. U. Akkaya, Dyes Pigm. 2021, 188, 109158.

[6]

D. Ma, H. Bian, M. Gu, L. Wang, X. Chen, X. Peng, Coord. Chem. Rev. 2024, 505, 215677.

[7]

X. F. Zhang, J. L. Zhu, J. Lumin. 2019, 212, 286.

[8]

V. N. Nguyen, Y. Yan, J. Zhao, J. Yoon, Acc. Chem. Res. 2021, 54, 207.

[9]

J. Zou, Z. Yin, P. Wang, D. Chen, J. Shao, Q. Zhang, L. Sun, W. Huang, X. Dong, Chem. Sci. 2018, 9, 2188.

[10]

X. Zhang, Z. J. Wang, Y. Q. Hou, Y. X. Yan, J. Z. Zhao, B. Dick, J. Mater. Chem. C 2021, 9, 11944.

[11]

J. Du, T. Shi, S. Long, P. Chen, W. Sun, J. Fan, X. Peng, Coord. Chem. Rev. 2021, 427, 213604.

[12]

W. Jiang, M. Liang, Q. Lei, G. Li, S. Wu, Cancers 2023, 15, 585.

[13]

J. Wang, Q. Gong, L. Jiao, E. Hao, Coord. Chem. Rev. 2023, 496, 215367.

[14]

Y. Yan, A. A. Sukhanov, M. H. E. Bousquet, Q. Guan, J. Zhao, V. K. Voronkova, D. Escudero, A. Barbon, Y. Xing, G. G. Gurzadyan, D. Jacquemin, J. Phys. Chem. B 2021, 125, 6280.

[15]

S. Gao, S. Yu, Y. M. Zhang, A. H. Wu, S. H. Zhang, G. G. Wei, H. Wang, Z. Y. Xiao, W. Lu, Adv. Funct. Mater. 2021, 31, 2008356.

[16]

Y. Liu, M. Gu, Q. Ding, Z. Zhang, W. Gong, Y. Yuan, X. Miao, H. Ma, X. Hong, W. Hu, Y. Xiao, Angew. Chem. Int. Ed. Engl. 2023, 62, e202214875.

[17]

L. A. Ortiz-Rodriguez, S. J. Hoehn, A. Loredo, L. Wang, H. Xiao, C. E. Crespo-Hernandez, J. Am. Chem. Soc. 2021, 143, 2676.

[18]

J. Deckers, T. Cardeynaels, S. Doria, N. Tumanov, A. Lapini, A. Ethirajan, M. Ameloot, J. Wouters, M. Di Donato, B. Champagne, W. Maes, J. Mater. Chem. C 2022, 10, 9344.

[19]

R. Prieto-Montero, A. Diaz Andres, A. Prieto-Castaneda, A. Tabero, A. Longarte, A. R. Agarrabeitia, A. Villanueva, M. J. Ortiz, R. Montero, D. Casanova, V. Martinez-Martinez, J. Mater. Chem. B 2022, 11, 169.

[20]

D. Wang, X. Wang, S. Zhou, P. Gu, X. Zhu, C. Wang, Q. Zhang, Coord. Chem. Rev. 2023, 482, 215074.

[21]

H. B. Cheng, X. Cao, S. Zhang, K. Zhang, Y. Cheng, J. Wang, J. Zhao, L. Zhou, X. J. Liang, J. Yoon, Adv. Mater. 2023, 35, 2207546.

[22]

H. Ning, Y. Yang, C. Lv, D. Zhou, S. Long, W. Sun, J. Du, J. Fan, X. Peng, Nano Res. 2023, 16, 12294.

[23]

J. Zhao, K. Xu, W. Yang, Z. Wang, F. Zhong, Chem. Soc. Rev. 2015, 44, 8904.

[24]

X. Zhao, J. Liu, J. Fan, H. Chao, X. Peng, Chem. Soc. Rev. 2021, 50, 4185.

[25]

L. Zhang, Z. Huang, D. Dai, Y. Xiao, K. Lei, S. Tan, J. Cheng, Y. Xu, J. Liu, X. Qian, Org. Lett. 2016, 18, 5664.

[26]

Z. Wang, M. Ivanov, Y. Gao, L. Bussotti, P. Foggi, H. Zhang, N. Russo, B. Dick, J. Zhao, M. Di Donato, G. Mazzone, L. Luo, M. Fedin, Chem. Eur J. 2020, 26, 1091.

[27]

K. X. Teng, W. K. Chen, L. Y. Niu, W. H. Fang, G. Cui, Q. Z. Yang, Angew. Chem. Int. Ed. Engl. 2021, 60, 19912.

[28]

L. Li, G. Yuan, Q. Qi, C. Lv, J. Liang, H. Li, L. Cao, X. Zhang, S. Wang, Y. Cheng, H. He, J. Mater. Chem. B 2022, 10, 3550.

[29]

S. Qi, N. Kwon, Y. Yim, N. Van-Nghia, J. Yoon, Chem. Sci. 2020, 11, 6479.

[30]

Y. Tang, X. Wang, G. Zhu, Z. Liu, X. M. Chen, H. K. Bisoyi, X. Chen, X. Chen, Y. Xu, J. Li, Q. Li, Small 2023, 19, e2205440.

[31]

A. A. Pakhomov, A. S. Belova, A. G. Khchoyan, Y. N. Kononevich, D. S. Ionov, M. A. Maksimova, A. Y. Frolova, M. V. Alfimov, V. I. Martynov, A. M. Muzafarov, Molecules 2022, 27, 9060.

[32]

X. Zheng, L. Zhang, M. Ju, L. Liu, C. Ma, Y. Huang, B. Wang, W. Ding, X. Luan, B. Shen, ACS Appl. Mater. Interfaces 2022, 14, 46262.

[33]

Y. Dong, A. Elmali, J. Zhao, B. Dick, A. Karatay, Chem. Phys. Chem. 2020, 21, 1388.

[34]

V. N. Nguyen, Y. Yim, S. Kim, B. Ryu, K. M. K. Swamy, G. Kim, N. Kwon, C. Y. Kim, S. Park, J. Yoon, Angew. Chem. Int. Ed. Engl. 2020, 59, 8957.

[35]

S. Radunz, S. Wedepohl, M. Rohr, M. Calderon, H. R. Tschiche, U. Resch-Genger, J. Med. Chem. 2020, 63, 1699.

[36]

S. Li, Y. Chen, Y. Wu, S. Yao, H. Yuan, Y. Tan, F. Qi, W. He, Z. Guo, Chemistry 2022, 28, e202202680.

[37]

Q. Gong, Q. Wu, X. Guo, W. Li, L. Wang, E. Hao, L. Jiao, Org. Lett. 2021, 23, 7220.

[38]

J. Deckers, T. Cardeynaels, H. Penxten, A. Ethirajan, M. Ameloot, M. Kruk, B. Champagne, W. Maes, Chem. Eur J. 2020, 26, 15212.

[39]

H. Ito, H. Sakai, Y. Suzuki, J. Kawamata, T. Hasobe, Chem. Eur J. 2020, 26, 316.

[40]

Y. Cakmak, S. Kolemen, S. Duman, Y. Dede, Y. Dolen, B. Kilic, Z. Kostereli, L. T. Yildirim, A. L. Dogan, D. Guc, E. U. Akkaya, Angew. Chem. Int. Ed. 2011, 50, 11937.

[41]

B. Ventura, G. Marconi, M. Bröring, R. Krüger, L. Flamigni, New J. Chem. 2009, 33, 428.

[42]

Z. S. Li, Y. Liu, X. F. Hou, Z. H. Xu, C. H. Liu, F. Z. Zhang, Z. G. Xie, J. Lumin. 2019, 212, 306.

[43]

T. Ozdemir, J. L. Bila, F. Sozmen, L. T. Yildirim, E. U. Akkaya, Org. Lett. 2016, 18, 4821.

[44]

J. F. Cao, T. C. Zhang, W. Sun, Dyes Pigm. 2022, 208, 110197.

[45]

D. Wang, Q. Wu, X. Zhang, W. Wang, E. Hao, L. Jiao, Org. Lett. 2020, 22, 7694.

[46]

X. F. Zhang, Dyes Pigm. 2017, 146, 491.

[47]

X. F. Zhang, X. Yang, B. Xu, Phys. Chem. Chem. Phys. 2017, 19, 24792.

[48]

Y. Hayashi, S. Yamaguchi, W. Y. Cha, D. Kim, H. Shinokubo, Org. Lett. 2011, 13, 2992.

[49]

A. Austin, G. A. Petersson, M. J. Frisch, F. J. Dobek, G. Scalmani, K. Throssell, J. Chem. Theor. Comput. 2012, 8, 4989.

[50]

A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.

[51]

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, , J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT 2016.

[52]

T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580e592.

[53]

Z. Y. Liu, T. Lu, Q. X. Chen, Carbon 2020, 165, 461.

[54]

W. Liu, G. Hong, D. Dai, L. Li, M. Dolg, Theor. Chem. Acc. 1997, 96, 75.

[55]

Y. Zhang, B. Suo, Z. Wang, N. Zhang, Z. Li, Y. Lei, W. Zou, J. Gao, D. Peng, Z. Pu, Y. Xiao, Q. Sun, F. Wang, Y. Ma, X. Wang, Y. Guo, W. Liu, J. Chem. Phys. 2020, 152, 064113.

[56]

W. Liu, F. Wang, L. Li, J. Theor. Comput. Chem. 2011, 02, 257.02.

[57]

W. J. Liu, F. Wang, L. Li, Vol. 5, World Scientific Publishing 2004, p. 257.

[58]

Z. Li, B. Suo, Y. Zhang, Y. Xiao, W. Liu, Mol. Phys. 2013, 111, 3741.

[59]

Z. Li, Y. Xiao, W. Liu, J. Chem. Phys. 2012, 137, 154114.

[60]

Z. Li, Y. Xiao, W. Liu, J. Chem. Phys. 2014, 141, 054111.

[61]

Y. L. Niu, W. Q. Li, Q. Peng, H. Geng, Y. P. Yi, L. J. Wang, G. J. Nan, D. Wang, Z. G. Shuai, Mol. Phys. 2018, 116, 1078.

[62]

Q. Peng, Y. Yi, Z. Shuai, J. Shao, J. Am. Chem. Soc. 2007, 129, 9333.

[63]

Y. Niu, Q. Peng, Z. Shuai, Sci. China, Ser. B: Chem. 2008, 51, 1153.

[64]

Z. G. Shuai, Chin. J. Chem. 2020, 38, 1223.

[65]

Q. Peng, Y. Yi, Z. Shuai, J. Shao, J. Am. Chem. Soc. 2007, 129, 9333.

[66]

E. Runge, E. K. U. Gross, Phys. Rev. Lett. 1984, 52, 997.

RIGHTS & PERMISSIONS

2024 The Author(s). Smart Molecules published by John Wiley & Sons Australia, Ltd on behalf of Dalian University of Technology.

AI Summary AI Mindmap
PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/