Facile preparation of alkali metal-modified hollow nanotubular manganese-based oxide catalysts and their excellent catalytic soot combustion performance

Chunlei Zhang , Siyu Gao , Xinyu Chen , Di Yu , Lanyi Wang , Xiaoqiang Fan , Ying Cheng , Xuehua Yu , Zhen Zhao

Smart Molecules ›› 2025, Vol. 3 ›› Issue (1) : e20240022

PDF
Smart Molecules ›› 2025, Vol. 3 ›› Issue (1) : e20240022 DOI: 10.1002/smo.20240022
RESEARCH ARTICLE

Facile preparation of alkali metal-modified hollow nanotubular manganese-based oxide catalysts and their excellent catalytic soot combustion performance

Author information +
History +
PDF

Abstract

The soot emitted during the operation of diesel engine exhaust seriously threatens the human health and environment, so treating diesel engine exhaust is critical. At present, the most effective method for eliminating soot particles is post-treatment technology. Preparation of economically viable and highly active soot combustion catalysts is a pivotal element of post-treatment technology. In this study, different single-metal oxide catalysts with fibrous structures and alkali metal-modified hollow nanotubular Mn-based oxide catalysts were synthesized using centrifugal spinning method. Activity evaluation results showed that the manganese oxide catalyst has the best catalytic activity among the prepared single-metal oxide catalysts. Further research on alkali metal modification showed that doping alkali metals is beneficial for improving the oxidation state of manganese and generating a large number of reactive oxygen species. Combined with the structural effect brought by the hollow nanotube structure, the alkali metal-modified Mn-based oxide catalysts exhibit superior catalytic performance. Among them, the Cs-modified Mn-based oxide catalyst exhibits the best catalytic performance because of its rich active oxygen species, excellent NO oxidation ability, abundant Mn4+ ions (Mn4+/Mnn+ = 64.78%), and good redox ability. The T10, T50, T90, and CO2 selectivity of the Cs-modified Mn-based oxide catalyst were 267°C, 324°C, 360°C, and 97.8%, respectively.

Keywords

alkali metal / catalyst / centrifugal spinning / Mn-based oxides / soot combustion

Cite this article

Download citation ▾
Chunlei Zhang, Siyu Gao, Xinyu Chen, Di Yu, Lanyi Wang, Xiaoqiang Fan, Ying Cheng, Xuehua Yu, Zhen Zhao. Facile preparation of alkali metal-modified hollow nanotubular manganese-based oxide catalysts and their excellent catalytic soot combustion performance. Smart Molecules, 2025, 3(1): e20240022 DOI:10.1002/smo.20240022

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

E. Long, C. Carlsten, Part. Fibre Toxicol. 2022, 19, 11.

[2]

M. H. G. Andersen, M. Frederiksen, A. T. Saber, R. S. Wils, A. S. Fonseca, I. K. Koponen, S. Johannesson, M. Roursgaard, S. Loft, P. Møller, U. Vogel, Part. Fibre Toxicol. 2019, 16, 21.

[3]

N. E. Alexis, C. Carlsten, Int. Immunopharmacol. 2014, 23, 347.

[4]

R. K. Robinson, M. A. Birrell, J. J. Adcock, M. A. Wortley, E. D. Dubuis, S. Chen, C. M. McGilvery, S. Hu, M. S. P. Shaffer, S. J. Bonvini, S. A. Maher, I. S. Mudway, A. E. Porter, C. Carlsten, T. D. Tetley, M. G. Belvisi, J. Allergy Clin. Immunol. 2018, 141, 1074.

[5]

S. Gao, D. Yu, S. Zhou, C. Zhang, L. Wang, X. Fan, X. Yu, Z. Zhao, J. Mater. Chem. A 2023, 11, 19210.

[6]

X. Wang, Y. Wang, Y. Bai, P. Wang, Y. Zhao, J. Energy Inst. 2019, 92, 1864.

[7]

S. J. Wilson, M. R. Miller, D. E. Newby, Antioxid. Redox Signaling 2018, 28, 819.

[8]

H. Reis, C. Reis, A. Sharip, W. Reis, Y. Zhao, R. Sinclair, L. Beeson, Environ. Int. 2018, 114, 252.

[9]

C. Zhang, D. Yu, C. Peng, L. Wang, X. Yu, Y. Wei, J. Liu, Z. Zhao, Appl. Catal. B Environ. 2022, 319, 121946.

[10]

B. A. A. L. van Setten, M. Makkee, J. A. Moulijn, Catal. Rev. 2001, 43, 489.

[11]

J. C. Clerc, Appl. Catal. B Environ. 1996, 10, 99.

[12]

Y. Yang, D. Zhao, Z. Gao, Y. Tian, T. Ding, J. Zhang, Z. Jiang, X. Li, Appl. Catal. B Environ. 2021, 286, 119932.

[13]

Y. Wei, P. Zhang, J. Xiong, Q. Yu, Q. Wu, Z. Zhao, J. Liu, Environ. Sci. Technol. 2020, 54, 6947.

[14]

B. Cui, K. Zhou, M. Hu, T. Zhao, Y. Liu, Y. Li, Z. Shao, M. Zhao, Chem. Eng. J. 2023, 461, 142107.

[15]

Y. Wei, Z. Zhao, J. Liu, S. Liu, C. Xu, A. Duan, G. Jiang, J. Catal. 2014, 317, 62.

[16]

L. Wang, X. Yu, Y. Wei, J. Liu, Z. Zhao, J. Rare Earths 2021, 39, 1151.

[17]

A. Rangaswamy, P. Sudarsanam, B. M. Reddy, J. Rare Earths 2015, 33, 1162.

[18]

W. Zhan, Y. Guo, X. Gong, Y. Guo, Y. Wang, G. Lu, Chin. J. Catal. 2014, 35, 1238.

[19]

F. Ji, Y. Men, J. Wang, Y. Sun, Z. Wang, B. Zhao, X. Tao, G. Xu, Appl. Catal. B Environ. 2019, 242, 227.

[20]

N. S. Portillo-Vélez, R. Zanella, Chem. Eng. J. 2020, 385, 123848.

[21]

C. Cao, H. Yang, J. Xiao, X. Yang, B. Ren, L. Xu, G. Liu, X. Li, Fuel 2021, 305, 121446.

[22]

D. Yu, Y. Ren, X. Yu, X. Fan, L. Wang, R. Wang, Z. Zhao, K. Cheng, Y. Chen, Z. Sojka, A. Kotarba, Y. Wei, J. Liu, Appl. Catal. B Environ. 2021, 285, 119779.

[23]

I. Atribak, A. Bueno-López, A. García-García, P. Navarro, D. Frías, M. Montes, Appl. Catal. B Environ. 2010, 93, 267.

[24]

D. Yu, X. Yu, C. Zhang, L. Wang, X. Fan, Z. Zhao, Y. Wei, J. Liu, J. Gryboś, B. Leszczyński, A. Wach, D. Wierzbicki, A. Kotarba, Z. Sojka, Appl. Catal. B Environ. 2023, 338, 123022.

[25]

C. Peng, D. Yu, C. Zhang, M. Chen, L. Wang, X. Yu, X. Fan, Z. Zhao, K. Cheng, Y. Chen, Y. Wei, J. Liu, J. Environ. Sci. 2023, 125, 82.

[26]

D. Yu, L. Wang, C. Zhang, C. Peng, X. Yu, X. Fan, B. Liu, K. Li, Z. Li, Y. Wei, J. Liu, Z. Zhao, ACS Catal. 2022, 12, 15056.

[27]

C. Zhang, S. Gao, S. Zhou, D. Yu, L. Wang, X. Fan, X. Yu, B. Liu, Z. Zhao, Appl. Catal. B Environ. 2024, 355, 124169.

[28]

Y. Tsai, N. Huy, J. Lee, Y. Lin, K. Lin, Chem. Eng. J. 2020, 395, 124939.

[29]

S. Zhou, L. Wang, S. Gao, X. Chen, C. Zhang, D. Yu, X. Fan, X. Yu, Z. Zhao, ACS Catal. 2024, 14, 6062.

[30]

C. Zhang, D. Yu, L. Wang, X. Yu, Z. Zhao, Sci. Sin. Chim. 2023, 53, 1636.

[31]

F. Fang, N. Feng, P. Zhao, C. Chen, X. Li, J. Meng, G. Liu, L. Chen, H. Wan, G. Guan, Chem. Eng. J. 2019, 372, 752.

[32]

H. Liang, B. Jin, M. Li, X. Yuan, J. Wan, W. Liu, X. Wu, S. Liu, Appl. Catal. B Environ. 2021, 294, 120271.

[33]

C. Lee, J. I. Park, Y. G. Shul, H. Einaga, Y. Teraoka, Appl. Catal. B Environ. 2015, 174−175, 185.

[34]

R. Liu, L. Hou, G. Yue, H. Li, J. Zhang, J. Liu, B. Miao, N. Wang, J. Bai, Z. Cui, T. Liu, Y. Zhao, Adv. Fiber Mater. 2022, 4, 604.

[35]

X. Zhang, Z. Ru, Y. Sun, M. Zhang, J. Wang, M. Ge, H. Liu, S. Wu, C. Cao, X. Ren, J. Mi, Y. Feng, J. Clean. Prod. 2022, 378, 134567.

[36]

T. Boningari, D. Pappas, P. Smirniotis, J. Catal. 2018, 365, 320.

[37]

Z. Zhang, R. Li, M. Wang, Y. Li, Y. Tong, P. Yang, Y. Zhu, Appl. Catal. B Environ. 2021, 282, 119542.

[38]

A. Vakhrushev, T. Boitsova, J. Porous Mater. 2021, 28, 1023.

[39]

J. Ko, B. Lee, Y. Chung, C. Park, Green Chem. 2015, 17, 4167.

[40]

H. Li, N. Yuan, J. Qian, B. Pan, Environ. Sci. Technol. 2022, 56, 4498.

[41]

Z. Chen, Y. Ma, B. Geng, M. Wang, X. Sun, J. Alloys Compd. 2017, 700, 113.

[42]

T. Hong, Z. Liu, X. Zheng, J. Zhang, L. Yan, Appl. Catal. B Environ. 2017, 202, 454.

[43]

F. Yuan, Y. Ni, L. Zhang, S. Yuan, J. Wei, J. Mater. Chem. A 2013, 1, 8438.

[44]

Y. Wu, J. Li, M. Lv, X. Zhang, R. Gao, C. Guo, X. Cheng, X. Zhou, Y. Xu, S. Gao, Z. Major, L. Huo, J. Hazard Mater. 2023, 442, 130041.

[45]

Y. Li, L. Yue, L. Yue, L. Jia, J. Liu, K. Xie, X. Yang, Y. Zhang, Sens. Actuators, B 2023, 378, 133125.

[46]

H. Zheng, W. Liao, J. Ding, F. Xu, A. Jia, W. Huang, Z. Zhang, ACS Catal. 2022, 12, 15451.

[47]

D. Liu, S. Sun, J. Yu, Chem. Eng. J. 2019, 377, 119825.

[48]

D. Yu, C. Peng, Y. Ren, L. Wang, C. Zhang, X. Fan, X. Yu, Z. Zhao, Appl. Catal. B Environ. 2024, 344, 123614.

[49]

Y. Zhang, F. Tao, S. Cao, K. Yin, X. Chang, R. Fan, C. Fan, L. Dong, Y. Yin, X. Chen, Sol. Energy Mater. Sol. Cells 2019, 200, 110043.

[50]

P. Legutko, J. Gryboś, M. Fedyna, J. Janas, A. Wach, J. Szlachetko, A. Adamski, X. Yu, Z. Zhao, A. Kotarba, Z. Sojka, Catalysts 2020, 10, 1390.

[51]

Y. Wang, K. Liu, J. Wu, Z. Hu, L. Huang, J. Zhou, T. Ishihara, L. Guo, ACS Catal. 2020, 10, 10021.

[52]

Q. Sun, J. He, X. Li, T. Lu, W. Si, F. Zhao, K. Wang, C. Huang, Chem. Eng. J. 2022, 432, 134402.

[53]

Q. Yang, X. Wang, H. Wang, X. Li, Q. Li, Y. Wu, Y. Peng, Y. Ma, J. Li, Appl. Catal. B Environ. 2023, 320, 121993.

[54]

C. Zhang, D. Yu, C. Peng, L. Wang, X. Fan, X. Yu, Z. Zhao, Processes 2021, 9, 1149.

[55]

M. Zhao, L. Deng, J. Liu, Y. Li, J. Liu, Z. Duan, J. Xiong, Z. Zhao, Y. Wei, W. Song, Y. Sun, ACS Catal. 2019, 9, 7548.

[56]

F. Fang, P. Zhao, N. Feng, C. Chen, X. Li, G. Liu, H. Wan, G. Guan, Catal. Sci. Technol. 2019, 9, 4938.

[57]

J. Kong, S. Song, W. Zhao, Z. Yu, Z. Xiang, G. Li, W. Zhang, T. An, Appl. Catal. B Environ. 2023, 339, 123118.

[58]

C. Peng, Y. Ren, D. Yu, L. Wang, C. Zhang, X. Fan, X. Yu, Z. Zhao, Y. Wei, J. Liu, Nano Res. 2023, 16, 6187.

[59]

J. Liu, Y. Du, J. Liu, Z. Zhao, K. Cheng, Y. Chen, Y. Wei, W. Song, X. Zhang, Appl. Catal. B Environ. 2017, 203, 704.

[60]

Z. Zhang, Y. Zhang, Q. Su, Z. Wang, Q. Li, X. Gao, Environ. Sci. Technol. 2010, 44, 8254.

RIGHTS & PERMISSIONS

2024 The Author(s). Smart Molecules published by John Wiley & Sons Australia, Ltd on behalf of Dalian University of Technology.

AI Summary AI Mindmap
PDF

63

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/