PDF
Abstract
Icing detection is critically important for preventing safety accidents and economic losses, especially concerning ice formation from invalidated anti-icing fluids (water and ethylene glycol) under extreme conditions. Traditional technologies like ultrasonics and capacitor-antenna face challenges with limited detection areas, lower accuracy, and susceptibility to electromagnetic interference. Here, we introduce a novel viscosity-ultrasensitive fluorescent probe 4′,4‴-(2,2-diphenylethene-1,1-diyl) bis-(3,5-dicarboxylate) (TPE-2B4C) based on AIEgens for monitoring ice formation of anti-icing fluids in low-temperature environments. TPE-2B4C, consisting of four sodium carboxylate groups and multiple freely rotating benzene rings, demonstrates outstanding solubility in anti-icing fluids and exhibits no fluorescent background signal even at low temperatures (<−20°C). Upon freezing, TPE-2B4C relocates from the water phase to higher viscosity ethylene glycol, causing restriction of benzene rings and a significantly increased green fluorescence signal. TPE-2B4C can successfully determine whether the anti-icing fluids are icing from −5 to −20°C with a high contrast ratio. Due to its simple setup, fast operation, and broad applicability, our new method is anticipated to be employed for rapid, real-time, and large-scale icing detection.
Keywords
aggregation-induced emission
/
anti-icing fluids
/
fluorescent probe
/
icing detection
/
viscosity-sensitive probe
Cite this article
Download citation ▾
Honghong Zhang, Fanghui Li, Jiahong Yu, Weijun Zhao.
Visual detection of anti-icing fluids freezing by a low-temperature viscosity-sensitive aggregation-induced emission probe.
Smart Molecules, 2025, 3(1): e20240014 DOI:10.1002/smo.20240014
| [1] |
W. Sun, C. Wang, J. Clean. Prod. 2019, 208, 1384.
|
| [2] |
O. Fakorede, Z. Feger, H. Ibrahim, A. Ilinca, J. Perron, C. Masson, Renew. Sust. Energ. Rev. 2016, 65, 662.
|
| [3] |
T. DiLorenzo, X. Yu, Accid. Anal. Prev. 2023, 191, 107197.
|
| [4] |
T. Cebeci, F. Kafyeke, Annu. Rev. Fluid Mech. 2003, 35, 11.
|
| [5] |
J. Wang, Z. Lu, Y. Shi, Aerosp. Sci. Technol. 2018, 82, 172.
|
| [6] |
D. Gagnon, J. D. Brassard, H. Ezzaidi, C. Volat, Aerospace 2020, 7, 39.
|
| [7] |
Q. Li, W. Pan, R. Yao, L. Hao, S. Liu, T. Bai, F. He, D. Wang, Measurement 2022, 204, 112075.
|
| [8] |
K. Hacıefendioğlu, H. B. Başağa, Z. Yavuz, M. T. Karimi, Renew. Energ. 2022, 182, 1.
|
| [9] |
P. D. Dongo, A. Hakansson, M. A. Stoeckel, E. Pavlopolou, S. Wang, D. Farina, P. Queeckers, S. Fabiano, C. S. Iorio, R. Crispin, Adv. Electron. Mater. 2023, 9, 2300060.
|
| [10] |
X. Zeng, H. Ong, L. Haworth, Y. Lu, D. Yang, Q. Wu, H. Torun, J. Martin, X. Hou, X. Lv, W. Yuan, Y. He, Y. He, Y. Fu, ACS Appl. Mater. Interfaces 2023, 15, 35648.
|
| [11] |
L. Ding, X. Yi, Z. Hu, X. Guo, Aerospace 2023, 10, 926.
|
| [12] |
Q. Li, L. Hao, W. Pan, S. Liu, T. Bai, Case Stud. Therm. 2022, 36, 102196.
|
| [13] |
W. Stocksreiter, H. Zangl, Sensors 2019, 19, 5562.
|
| [14] |
Z. Xu, J. Chen, L. Hu, Y. Tan, S. Liu, J. Yin, Chin. Chem. Lett. 2017, 28, 1935.
|
| [15] |
S. Wu, Y. Yang, Y. Cheng, S. Wang, Z. Zhou, P. Zhang, X. Zhu, B. Wang, H. Zhang, S. Xie, Z. Zeng, B. Tang, Aggregate 2022, 4, 2692.
|
| [16] |
C. Xu, X. Ou, B. Wang, H. Shen, J. Liu, X. Yang, Q. Zhou, J. Chau, H. Sung, G. Xing, J. Lam, B. Tang, J. Am. Chem. Soc. 2024, 146, 4851.
|
| [17] |
J. Wang, M. Taki, Y. Ohba, M. Arita, S. Yamaguchi, Angew. Chem. Int. Ed. 2024, 63, e202404328.
|
| [18] |
H. Sun, Q. Xu, C. Xu, Y. Zhang, J. Ai, M. Ren, K. Liu, F. Kong, Food Chem. 2023, 418, 135994.
|
| [19] |
D. Wang, B. Tang, Acc. Chem. Res. 2019, 52, 2559.
|
| [20] |
X. Huang, Z. Jiao, Z. Guo, Y. Yang, P. Alam, Y. Liu, Y. Men, P. Zhang, H. Feng, S. Yao, B. Tang, ACS Mater. Lett. 2021, 3, 249.
|
| [21] |
H. Duan, F. Cao, M. Zhang, M. Gao, L. Cao, Chin. Chem. Lett. 2022, 33, 2459.
|
| [22] |
N. Ruan, Q. Qiu, X. Wei, J. Liu, L. Wu, N. Jia, C. Huang, T. D. James, J. Am. Chem. Soc. 2024, 146, 2072.
|
| [23] |
L. Bao, K. Liu, Y. Chen, G. Yang, Anal. Chem. 2021, 93, 9064.
|
| [24] |
L. Y. D. ZhouJiao, Y. Zhou, D. Jiao, J. Ren, Y. Qi, H. Wang, Y. Shi, D. Ding, X. Xue, Aggregate 2023, 5, e403.
|
| [25] |
Z. Qiu, W. Zhao, M. Cao, Y. Wang, J. W. Y. Lam, Z. Zhang, X. Chen, B. Tang, Adv. Mater. 2018, 30, 1803924.
|
| [26] |
M. Wang, H. Liang, C. Wang, A. Wang, Y. Song, J. Wang, B. Wang, Y. Wei, X. He, Y. Yang, Adv. Mater. 2023, 35, 2306683.
|
| [27] |
H. Ding, C. Li, H. Zhang, N. Lin, W. Ren, S. Li, W. Liu, Z. Xiong, B. Xia, C. Wang, Chin. Chem. Lett. 2023, 34, 107725.
|
| [28] |
X. Li, H. Yang, P. Zheng, D. Lin, Z. Zhang, M. Kang, D. Wang, B. Tang, J. Mater. Chem. A 2023, 11, 4850.
|
| [29] |
Z. He, P. Liu, S. Zhang, J. Yan, M. Wang, Z. Cai, J. Wang, Y. Dong, Angew. Chem. Int. Ed. 2019, 58, 3834.
|
| [30] |
W. Guan, R. Yao, X. Tang, C. Lu, J. Phys. Chem. C 2022, 126, 7556.
|
| [31] |
X. Sui, X. Wang, C. Cai, J. Ma, J. Yang, L. Zhang, Engineering 2023, 23, 82.
|
| [32] |
Z. Liu, Z. Gao, H. Wu, L. Yan, Y. Mei, H. Peng, H. Wang, J. Du, B. Zheng, Y. Guo, Dyes Pigm. 2024, 223, 111969.
|
| [33] |
J. Liu, H. Zhang, L. Hu, J. Wang, J. W. Y. Lam, L. Blancafort, B. Tang, J. Am. Chem. Soc. 2022, 144, 7901.
|
| [34] |
X. Nie, W. Huang, D. Zhou, T. Wang, X. Wang, B. Chen, X. Zhang, G. Zhang, Aggregate 2022, 3, 165.
|
| [35] |
Y. Zhou, J. Hua, D. Ding, Y. Tang, Biomaterials 2022, 286, 121605.
|
| [36] |
J. Gu, X. Li, Z. Zhou, R. Liao, J. Gao, Y. Tang, Q. Wang, Chem. Eng. J. 2019, 368, 157.
|
| [37] |
A. K. Das, S. Goswami, M. Dolai, J. Mol. Struct. 2019, 1181, 329.
|
| [38] |
C. Ma, W. Sun, L. Xu, Y. Qian, J. Dai, G. Zhong, Y. Hou, J. Liu, B. Shen, J. Mater. Chem. B 2020, 8, 9642.
|
| [39] |
M. S. Kumar, V. S, M. Dolai, A. Nag, Y. Bylappa, A. K. Das, Anal. Methods 2024, 16, 676.
|
| [40] |
Q. Xu, M. Ren, K. Liu, X. Wang, J. Wang, S. Wang, F. Kong, Chem. Eng. J. 2022, 430, 132851.
|
RIGHTS & PERMISSIONS
2024 The Author(s). Smart Molecules published by John Wiley & Sons Australia, Ltd on behalf of Dalian University of Technology.