Ru@NiMoS aggregate with boosted electrochemical catalysis for enhanced electrochemiluminescence and lidocaine detection

Yongzhuang Lu , Haoran Wang , Qiyao Li , Qian Liu , Xiaoxu Zhang , Yuying Jia , Xiangyu Cai , Zheng Zhao , Yanfu Huan , Ben Zhong Tang

Smart Molecules ›› 2025, Vol. 3 ›› Issue (1) : e20240011

PDF
Smart Molecules ›› 2025, Vol. 3 ›› Issue (1) : e20240011 DOI: 10.1002/smo.20240011
RESEARCH ARTICLE

Ru@NiMoS aggregate with boosted electrochemical catalysis for enhanced electrochemiluminescence and lidocaine detection

Author information +
History +
PDF

Abstract

A binder-free Ru@NiMoS electrode was engineered by in situ growth of two-dimensional NiMoS nanosheets on nickel foam. This process effectively promoted the electrostatic-driven aggregation of Ru(bpy)32+, harnessing the synergistic effect to enhance electrochemiluminescence (ECL) performance. The integration (Ru@NiMoS) achieved an impressive ECL efficiency of 70.1%, marking an impressive 36.9-fold enhancement over conventional Ru. Additionally, its ECL intensity was found to be remarkably 172.2 times greater than that of Ru. Within the Ru(bpy)32+/TPA system, NiMoS emerged as a pivotal electrochemical catalyst, markedly boosting both the oxygen evolution reaction and the generation of reactive intermediates. Leveraging these distinctive properties, a highly efficient ECL sensor for lidocaine detection was developed. This sensor exhibited a linear response within the concentration range of 1 nM to 1 μM and achieved a remarkably low detection limit of 0.22 nM, underlining its substantial potential for practical application.

Keywords

binder-free / catalysis / electrochemiluminescence / oxygen evolution reaction / synergistic effect

Cite this article

Download citation ▾
Yongzhuang Lu, Haoran Wang, Qiyao Li, Qian Liu, Xiaoxu Zhang, Yuying Jia, Xiangyu Cai, Zheng Zhao, Yanfu Huan, Ben Zhong Tang. Ru@NiMoS aggregate with boosted electrochemical catalysis for enhanced electrochemiluminescence and lidocaine detection. Smart Molecules, 2025, 3(1): e20240011 DOI:10.1002/smo.20240011

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. Bertoncello, R. J. Forster, Biosens. Bioelectron. 2009, 24, 3191.

[2]

B. Yin, L. Jiang, X. Wang, Y. Liu, K. Y. Kuang, M. M. Jing, C. M. Fang, C. J. Zhou, S. Chen, M. Z. Zhu, Aggregate 2023, 5, e417.

[3]

D. M. Hercules, Science 1964, 145, 808.

[4]

R. E. Visco, E. A. Chandross, J. Am. Chem. Soc. 1964, 86, 5350.

[5]

H. Gao, S. Y. Shi, S. M. Wang, Q. Q. Tao, H. L. Ma, J. Hu, H. Y. Chen, J. J. Xu, Aggregate 2023, e394.

[6]

L. Zhang, S. Dong, Anal. Chem. 2006, 78, 5119.

[7]

Y. Y. Sun, Q. Yan, Z. Jun, Q. X. Ren, Microchim. Acta 2021, 188, 300.

[8]

Y. Zhou, E. Villani, T. Kurioka, Y. Zhang, I. Tomita, S. Inagi, Aggregate 2023, 4, e202.

[9]

H. Wang, Anal. Bioanal. Chem. 2021, 413, 4119.

[10]

H. P. Sun, H. Wang, W. Q. Bai, L. Bao, J. X. Lin, Y. Lia, Talanta 2019, 191, 350.

[11]

H. Y. Wang, L. C. Tian, X. Zhao, M. Ali, K. Yin, Z. C. Xing, Mater. Today Commun. 2023, 34, 105041.

[12]

S. Pahra, S. Sharma, P. Devi, Green Energy Harvesting: Materials for Hydrogen Generation and Carbon Dioxide Reduction 2022, pp. 46–74.

[13]

R. Ghosh, B. Papnai, Y. S. Chen, K. Yadav, R. Sankar, Y. P. Hsieh, Y. F. Chen, Adv. Mater. 2023, 2210746.

[14]

P. Prabhu, V. Jose, J. M. Lee, Matter 2020, 2, 526.

[15]

B. Chen, D. Chao, E. Liu, M. Jaroniec, N. Zhao, S. Z. Qiao, Energy Environ. 2020, 13, 1096.

[16]

Q. Yun, Q. Lu, X. Zhang, C. Tan, H. Zhang, Angew. Chem. Int. Ed. Engl. 2018, 57, 626.

[17]

X. Zhang, Z. Lai, Q. Ma, H. Zhang, Chem. Soc. Rev. 2018, 47, 3301.

[18]

W. Xiang, Y. Luo, Y. Yue, H. Ding, Y. Dong, J. Electroanal. Chem. 2022, 915, 116364.

[19]

P. J. Wang, Q. Wu, C. X. Wang, Y. X. Pu, M. Zhou, M. X. Zhang, J. Electrochem. Soc. 2020, 167, 107505.

[20]

Y. Zhang, H. Yin, C. B. Jia, Y. P. Dong, H. C. Ding, X. F. Chu, Spectrochim. Acta Mol. Biomol. Spectrosc. 2020, 240, 118607.

[21]

C. Ma, H. F. Wei, M. X. Wang, S. J. Wu, Y. C. Chang, J. R. Zhang, L. P. Jiang, W. L. Zhu, Z. X. Chen, Y. H. Lin, Nano Lett. 2020, 20, 5008.

[22]

L. Shang, X. H. Zhao, W. Zhang, L. P. Jia, R. N. Ma, Q. W. Xue, H. S. Wang, A. X. Guo, L. Si, Microchim. Acta 2022, 189, 17.

[23]

Y. Qin, Z. Wang, J. Xu, F. Han, X. Zhao, D. Han, Y. Liu, Z. Kang, L. Niu, Anal. Chem. 2020, 92, 15352.

[24]

X. J. Li, X. Sun, D. W. Fan, T. Yan, R. Feng, H. Wang, D. Wu, Q. Wei, Biosens. Bioelectron. 2019, 142, 111551.

[25]

A. Diallo, A. C. Beye, T. B. Doyle, E. Park, M. Maaza, Green Chem. Lett. Rev. 2015, 8, 30.

[26]

J. Marques, L. Anjo, M. P. M. Marques, T. M. Santos, F. A. A. Paz, S. S. Braga, J. Organomet. Chem. 2008, 693, 3021.

[27]

J. Zhou, R. Zong, J. Ye, J. Lumin. 2007, 122, 218.

[28]

S. Chinnathambi, M. Ammam, J. Power Sources 2015, 284, 524.

[29]

T. A. Ho, Y. B. Cho, Y. S. Kim, J. Nanosci. Nanotechno. 2016, 16, 4534.

[30]

L. F. Yang, L. Zhang, G. C. Xu, X. Ma, W. W. Wang, H. J. Song, D. Z. Jia, ACS Sustain. Chem. Eng. 2018, 6, 12961.

[31]

M. X. Shang, C. C. Du, H. Huang, J. X. Mao, P. Liu, W. B. Song, J. Colloid Interface Sci. 2018, 532, 24.

[32]

D. Siddhartha, T. Abhishek, H. Shamima, Mater. Today: Proc. 2021, 46, 6127.

[33]

H. Y. Nan, Z. L. Wang, W. H. Wang, Z. Liang, Y. Lu, Q. Chen, D. W. He, P. H. Tan, F. Miao, X. R. Wang, J. L. Wang, Z. H. Ni, ACS Nano 2014, 8, 5738.

[34]

X. B. Xu, W. Zhong, X. Zhang, J. Dou, Z. G. Xiong, Y. Sun, T. T. Wang, Y. W. Du, J. Colloid Interface Sci. 2019, 543, 147.

[35]

M. A. Bissett, I. A. Kinloch, R. A. Dryfe, ACS Appl. Mater. Interfaces 2015, 7, 17388.

[36]

S. Baik, Y. Koo, W. Choi, Curr. Appl. Phys. 2022, 42, 38.

[37]

K. Saha, S. Gayen, U. Kaur, T. Roisnel, S. Ghosh, Dalton Trans. 2021, 50, 12990.

[38]

S. Dam, A. Thakur, S. Hussain, Mat. Sci. Semicon. Proc. 2021, 136, 106162.

[39]

W. Sun, L. Cao, J. Yang, J. Mater. Chem. A 2016, 4, 12561.

[40]

S. Hao, X. Ji, F. Liu, S. Zhong, K. Y. Pang, K. G. Lim, T. C. Chong, R. Zhao, ACS Appl. Nano Mater. 2021, 4, 1766.

[41]

G. Kalaiyarasan, C. V. Raju, M. Veerapandian, S. S. Kumar, J. Joseph, Anal. Bioanal. Chem. 2020, 412, 539.

[42]

Y. P. Dong, T. T. Gao, Y. Zhou, L. P. Jiang, J. J. Zhu, Sci. Rep. 2015, 5, 15392.

[43]

J. X. Guo, H. F. Zhu, Y. F. Sun, L. Tang, X. Zhang, Electrochim. Acta 2016, 211, 603.

[44]

X. Tan, W. Ding, Z. Jiang, L. Sun, Y. Huang, Nano Res. 2022, 1.

[45]

F. Takahashi, R. Shimizu, T. Nakazawa, J. Y. Jin, Ultrason. Sonochem. 2020, 63, 104947.

[46]

X. Li, X. Du, Microchem. J. 2022, 176, 107224.

[47]

S. J. Wang, S. Zhu, Z. Q. Kang, X. X. Wang, Z. X. Deng, K. Hu, J. J. Hu, X. C. Liu, G. X. Wang, G. C. Zang, Y. C. Zhang, Research 2023, 6, 0117.

[48]

Y. Q. Han, Y. F. Fang, X. T. Ding, J. Liu, Z. Y. Jin, Y. H. Xu, Electrochem. Commun. 2020, 116, 106760.

[49]

A. Krishnakumar, R. K. Mishra, S. Kadian, A. Zareei, U. H. Rivera, R. Rahimi, Anal. Chim. Acta 2022, 1229, 340332.

[50]

Y. Wang, J. Ding, P. Zhou, J. Liu, Z. Qiao, K. Yu, J. Jiang, B. Su, Angew. Chem. Int. Ed. Engl. 2023, 62, e202216525.

[51]

Y. Han, Y. Fang, X. Ding, J. Liu, Z. Jin, Y. Xu, Electrochem. Commun. 2020, 116, 106760.

[52]

F. Takahashi, K. Matsuda, T. Nakazawa, S. Mori, M. Yoshida, R. Shimizu, H. Tatsumi, J. Jin, Separ. Sci. 2023, 6, 2200081.

[53]

Y. Lu, Z. Zhao, X. Zhang, Y. Jia, H. Shan, Y. Huan, B. Z. Tang, Sens. Actuators B Chem. 2023, 396, 134590.

RIGHTS & PERMISSIONS

2024 The Author(s). Smart Molecules published by John Wiley & Sons Australia, Ltd on behalf of Dalian University of Technology.

AI Summary AI Mindmap
PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/