Visible and selective gel assembly via covalent click chemistry
Yinglin Zheng, Zhihai Ke
Visible and selective gel assembly via covalent click chemistry
This study marks the birth of visible and selective click covalent assembly. It is achieved by amplifying orthogonal alkyne−azide click chemistry through interfacial multisite interactions between azide/alkyne functionalized polymer hydrogels. Macroscopic assembly of hydrogels via host−guest chemistry or noncovalent interactions such as electrostatic interactions has been reported. Unlike macroscopic supramolecular assembly, here we report visible and selective “click” covalent assembly of hydrogels at the macroscale. LEGO-like hydrogels modified with alkyne and azide groups, respectively, can click together via the formation of covalent bonds. Monomer concentration-dependent assembly and selective covalent assembly have been studied. Notably, macroscopic gel assembly clearly elucidates click preferences and component selectivity not observed in the solution reactions of competing monomers.
click chemistry / hydrogel / selective covalent assembly
[1] |
Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed. 2001;40(11):2004-2021.
|
[2] |
Wu P, Feldman AK, Nugent AK, et al. Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes. Angew Chem Int Ed. 2004;43(30):3928-3932.
|
[3] |
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by huisgen 1,3-dipolar cycloaddition: synthesis of 5-sulfonyl tetrazoles from azides and sulfonyl cyanides. Angew Chem Int Ed. 2002;41(12):2110-2113.
|
[4] |
Lewis WG, Green LG, Grynszpan F, et al. Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew Chem Int Ed. 2002;41(6):1053-1057.
|
[5] |
Moses JE, Moorhouse AD. The growing applications of click chemistry. Chem Soc Rev. 2007;36(8):1249-1262.
|
[6] |
Meldal M, Tornøe CW. Cu-catalyzed azide−alkyne cycloaddition. Chem Rev. 2008;108(8):2952-3015.
|
[7] |
Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed. 2002;41(14):2596-2599.
|
[8] |
Sletten EM, Bertozzi CR. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed. 2009;48(38):6974-6998.
|
[9] |
Baskin JM, Bertozzi CR. Bioorthogonal click chemistry: covalent labeling in living systems. QSAR Comb Sci. 2007;26(11-12):1211-1219.
|
[10] |
Chow H-F, Lau K-N, Ke Z, Liang Y, Lo C-M. Conformational and supramolecular properties of main chain and cyclic click oligotriazoles and polytriazoles. Chem Commun. 2010;46(20):3437-3453.
|
[11] |
Mirjafari A. Ionic liquid syntheses via click chemistry: expeditious routes toward versatile functional materials. Chem Commun. 2018;54(24):2944-2961.
|
[12] |
Döhler D, Michael P, Binder WH. CuAAC-based click chemistry in self-healing polymers. Acc Chem Res. 2017;50(10):2610-2620.
|
[13] |
Ouyang T, Liu X, Ouyang H, Ren L. Recent trends in click chemistry as a promising technology for virus-related research. Virus Res. 2018;256:21-28.
|
[14] |
Kolb HC, Sharpless KB. The growing impact of click chemistry on drug discovery. Drug Discovery Today. 2003;8(24):1128-1137.
|
[15] |
Debets MF, Van Berkel SS, Dommerholt J, Dirks AJ, Rutjes FPJT, Van Delft FL. Bioconjugation with strained alkenes and alkynes. Acc Chem Res. 2011;44(9):805-815.
|
[16] |
Kim E, Koo H. Biomedical applications of copper-free click chemistry: in vitro, in vivo, and ex vivo. Chem Sci. 2019;10(34):7835-7851.
|
[17] |
Li W, Li X, Zhu W, et al. Topochemical approach to efficiently produce main-chain poly(bile acid)s with high molecular weights. Chem Commun. 2011;47(27):7728-7730.
|
[18] |
Ni B-B, Wang C, Wu H, Pei J, Ma Y. Copper-free cycloaddition of azide and alkyne in crystalline state facilitated by arene–perfluoroarene interactions. Chem Commun. 2010;46(5):782-784.
|
[19] |
Biradha K, Santra R. Crystal engineering of topochemical solid state reactions. Chem Soc Rev. 2013;42(3):950-967.
|
[20] |
Desiraju GR. Crystal engineering: from molecule to crystal. J Am Chem Soc. 2013;135(27):9952-9967.
|
[21] |
Hema K, Sureshan KM. Topochemical azide–alkyne cycloaddition reaction. Acc Chem Res. 2019;52(11):3149-3163.
|
[22] |
Levesque I, Rondeau-Gagné S, Néabo JR, Morin J-F. Synthesis, gelation and topochemical polymerization of meta-linked oligophenylenebutadiynylene derivatives. Org Biomol Chem. 2014;12(45):9236-9242.
|
[23] |
Krishnan BP, Sureshan KM. Topochemical azide–alkyne cycloaddition reaction in gels: size-tunable synthesis of triazole-linked polypeptides. J Am Chem Soc. 2017;139(4):1584-1589.
|
[24] |
Briggs TS, Rauscher WC. An oscillating iodine clock. J Chem Educ. 1973;50(7):496.
|
[25] |
Hernando F, Laperuta S, Kuijl JV, Laurin N, Sacks F, Ciolino A. Another twist of the foam: an effective test considering a quantitative approach to “elephant's toothpaste. J Chem Educ. 2017;94(7):907-910.
|
[26] |
Ullmann MA, Wallau WM, Bianchini D, Schneid Ada C, Montenegro LMP. “Pharaoh's snakes”: history of a fun pyrotechnical experiment and its applicability in teaching basic chemical principles. Quím Nova. 2014;37(7):1236-1243.
|
[27] |
Choi I, Song HD, Lee S, Yang YI, Kang T, Yi J. Core–satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex. J Am Chem Soc. 2012;134(29):12083-12090.
|
[28] |
Dey P, Zhu S, Thurecht KJ, Fredericks PM, Blakey I. Self assembly of plasmonic core–satellite nano-assemblies mediated by hyperbranched polymer linkers. J Mater Chem B. 2014;2(19):2827-2837.
|
[29] |
Gandra N, Singamaneni S. Clicked” plasmonic core–satellites: covalently assembled gold nanoparticles. Chem Commun. 2012;48(94):11540-11542.
|
[30] |
Yoon JH, Lim J, Yoon S. Controlled assembly and plasmonic properties of asymmetric core–satellite nanoassemblies. ACS Nano. 2012;6(8):7199-7208.
|
[31] |
Grzelczak M, Vermant J, Furst EM, Liz-Marzán LM. Directed self-assembly of nanoparticles. ACS Nano. 2010;4(7):3591-3605.
|
[32] |
Ke Z, Chow H-F, Chan M-C, Liu Z, Sze K-H. Head-to-tail dimerization and organogelating properties of click peptidomimetics. Org Lett. 2012;14(1):394-397.
|
[33] |
Harada A, Kobayashi R, Takashima Y, Hashidzume A, Yamaguchi H. Macroscopic self-assembly through molecular recognition. Nat Chem. 2011;3:34-37.
|
[34] |
Yamaguchi H, Kobayashi R, Takashima Y, Hashidzume A, Harada A. Self-assembly of gels through molecular recognition of cyclodextrins: shape selectivity for linear and cyclic guest molecules. Macromolecules. 2011;44(8):2395-2399.
|
[35] |
Harada A, Takashima Y, Nakahata M. Supramolecular polymeric materials via cyclodextrin−guest interactions. Acc Chem Res. 2014;47(7):2128-2140.
|
[36] |
Zheng Y, Hashidzume A, Takashima Y, Yamaguchi H, Harada A. Switching of macroscopic molecular recognition selectivity using a mixed solvent system. Nat Commun. 2012;3:831.
|
[37] |
Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A. Photoswitchable gel assembly based on molecular recognition. Nat Commun. 2012;3:603.
|
[38] |
Nakahata M, Takashima Y, Hashidzume A, Harada A. Macroscopic self-assembly based on complementary interactions between nucleobase pairs. Chem–Euro J. 2015;21(7):2770-2774.
|
[39] |
Sontakke VA, Yokobayashi Y. Programmable macroscopic self-assembly of dna-decorated hydrogels. J Am Chem Soc. 2022;144(5):2149-2155.
|
[40] |
Qi H, Ghodousi M, Du Y, et al. DNA-directed self-assembly of shape-controlled hydrogels. Nat Commun. 2013;4:2275.
|
[41] |
Ju G, Cheng M, Guo F, Zhang Q, Shi F. Elasticity-dependent fast underwater adhesion demonstrated by macroscopic supramolecular assembly. Angew Chem Int Ed. 2018;57(29):8963-8967.
|
[42] |
Ju G, Guo F, Zhang Q, et al. Self-correction strategy for precise, massive, and parallel macroscopic supramolecular assembly. Adv Mater. 2017;29(37):1702444.
|
[43] |
Wu D, Sinha N, Lee J, et al. Polymers with controlled assembly and rigidity made with click-functional peptide bundles. Nature. 2019;574:658-662.
|
[44] |
Bird RE, Lemmel SA, Yu X, Zhou QA. Bioorthogonal chemistry and its applications. Bioconjug Chem. 2021;32(12):2457-2479.
|
[45] |
Welser K, Perera MDA, Aylott JW, Chan WC. A facile method to clickable sensing polymeric nanoparticles. Chem Commun. 2009;2009(43):6601-6603.
|
[46] |
Madhusudhanan MC, Balan H, Werz DB, Sureshan KM. Azide⋅⋅⋅oxygen interaction: a crystal engineering tool for conformational locking. Angew Chem Int Ed. 2021;60(42):22797-22803.
|
[47] |
Bursch M, Kunze L, Vibhute AM, et al. Quantification of noncovalent interactions in azide–pnictogen, –chalcogen, and –halogen contacts. Chem−Eur J. 2021;27(14):4627-4639.
|
[48] |
Bhandary S, Pathigoolla A, Madhusudhanan MC, Sureshan KM. Azide–alkyne interactions: a crucial attractive force for their preorganization for topochemical cycloaddition reaction. Chem–Eur J. 2022;28(28):e202200820.
|
/
〈 | 〉 |