Revealing active Cu nanograins for electrocatalytic CO2 reduction through operando studies
Junjun Li, Yajing Sun, Zhicheng Zhang
Revealing active Cu nanograins for electrocatalytic CO2 reduction through operando studies
Copper (Cu) has been regarded as a highly efficient electrocatalyst for the conversion of CO2 into a multicarbon product. However, the catalytic mechanism and the active sites of Cu catalysts under operating conditions still remain elusive. Yang's team applied systematic operando characterization techniques to provide a quantitative analysis of the valence states and the chemical environment of Cu nanocatalysts under electrochemical reaction conditions, which clearly reveal the evolution of Cu nanocatalysts before and after the entire electrochemical CO2 reduction.
CO2 reduction / copper / electrocatalysis / nanograins / operando techniques
[1] |
Sanz-Pérez ES, Murdock CR, Didas SA, Jones CW. Direct capture of CO2 from ambient air. Chem Rev. 2016;116(19):11840-11876.
|
[2] |
Wang G, Chen J, Ding Y, et al. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem Soc Rev. 2021;50(8):4993-5061.
|
[3] |
Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev. 2019;119(12):7610-7672.
|
[4] |
Li J, Abbas SU, Wang H, Zhang Z, Hu W. Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano Micro Lett. 2021;13(1):216.
|
[5] |
Ross MB, De Luna P, Li Y, et al. Designing materials for electrochemical carbon dioxide recycling. Nat Catal. 2019;2(8):648-658.
|
[6] |
Mariano RG, McKelvey K, White HS, Kanan MW. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science. 2017;358(6367):1187-1192.
|
[7] |
Zhu Y, Gao Z, Zhang Z, et al. Selectivity regulation of CO2 electroreduction on asymmetric AuAgCu tandem heterostructures. Nano Res. 2022;15(9):7861-7867.
|
[8] |
Han L, Tian B, Gao X, et al. Copper nanowire with enriched high-index facets for highly selective CO2 reduction. SmartMat. 2022;3(1):142-150.
|
[9] |
Shi Y, Hou M, Li J, Li L, Zhang Z. Cu-based tandem catalysts for electrochemical CO2 reduction. Acta Phys-Chim Sin. 2022;38(11):2206020.
|
[10] |
Ahmad T, Liu S, Sajid M, et al. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: a review. Nano Res Energy. 2022;1(2):e9120021.
|
[11] |
Chang C-J, Lin S-C, Chen H-C, et al. Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO2 reduction toward methane. J Am Chem Soc. 2020;142(28):12119-12132.
|
[12] |
Arán-Ais RM, Scholten F, Kunze S, Rizo R, Roldan Cuenya B. The role of in situ generated morphological motifs and Cu(I) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat Energy. 2020;5(4):317-325.
|
[13] |
Yang Y, Louisia S, Yu S, et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature. 2023;614(7947):262-269.
|
[14] |
Kim D, Kley CS, Li Y, Yang P. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc Natl Acad Sci USA. 2017;114(40):10560-10565.
|
[15] |
Li Y, Kim D, Louisia S, et al. Electrochemically scrambled nanocrystals are catalytically active for CO2-to-multicarbons. Proc Natl Acad Sci USA. 2020;117(17):9194-9201.
|
[16] |
Reske R, Mistry H, Behafarid F, Roldan Cuenya B, Strasser P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J Am Chem Soc. 2014;136(19):6978-6986.
|
/
〈 | 〉 |