Materials and structural design for preferable Zn deposition behavior toward stable Zn anodes
Qinghe Cao, Yong Gao, Jie Pu, Abdelnaby M. Elshahawy, Cao Guan
Materials and structural design for preferable Zn deposition behavior toward stable Zn anodes
Benefiting from the high capacity of Zn metal anodes and intrinsic safety of aqueous electrolytes, rechargeable Zn ion batteries (ZIBs) show promising application in the post-lithium-ion period, exhibiting good safety, low cost, and high energy density. However, its commercialization still faces problems with low Coulombic efficiency and unsatisfied cycling performance due to the poor Zn/Zn2+ reversibility that occurred on the Zn anode. To improve the stability of the Zn anode, optimizing the Zn deposition behavior is an efficient way, which can enhance the subsequent striping efficiency and limit the dendrite growth. The Zn deposition is a controlled kinetics-diffusion joint process that is affected by various factors, such as the interaction between Zn2+ ions and Zn anodes, ion concentration gradient, and current distribution. In this review, from an electrochemical perspective, we first overview the factors affecting the Zn deposition behavior and summarize the modification principles. Subsequently, strategies proposed for interfacial modification and 3D structural design as well as the corresponding mechanisms are summarized. Finally, the existing challenges, perspectives on further development direction, and outlook for practical applications of ZIBs are proposed.
3D structural design / interfacial modification / long-term stability / Zn anode / Zn deposition behavior
[1] |
Choi C, Ashby DS, Butts DM, et al. Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews Materials. 2019;5(1):5-19.
|
[2] |
Zhang N, Chen X, Yu M, Niu Z, Cheng F, Chen J. Materials chemistry for rechargeable zinc-ion batteries. Chem Soc Rev. 2020;49(13):4203-4219.
|
[3] |
Li T, Peng X, Cui P, et al. Recent progress and future perspectives of flexible metal-air batteries. SmartMat. 2021;2(4):519-553.
|
[4] |
Cao Q, Du J, Tang X, et al. Structure-enhanced mechanically robust graphite foam with ultrahigh MnO2 loading for supercapacitors. Research. 2020;2020:1-10.
|
[5] |
Pu J, Gao Y, Cao Q, et al. Vanadium metal-organic framework-derived multifunctional fibers for asymmetric supercapacitor, piezoresistive sensor, and electrochemical water splitting. SmartMat. 2022;3(4):608-618.
|
[6] |
Hosaka T, Kubota K, Hameed AS, Komaba S. Research development on K-ion batteries. Chem Rev. 2020;120(14):6358-6466.
|
[7] |
Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ. Metallic anodes for next generation secondary batteries. Chem Soc Rev. 2013;42(23):9011-9034.
|
[8] |
Kong L, Tang C, Peng HJ, Huang JQ, Zhang Q. Advanced energy materials for flexible batteries in energy storage: a review. SmartMat. 2020;1(1):1-35.
|
[9] |
Zhong Y, Zhou S, He Q, Pan A. Architecture design principles for stable electrodeposition behavior-towards better alkali metal (Li/Na/K) anodes. Energy Storage Mater. 2022;45:48-73.
|
[10] |
Chen G, Yan L, Luo H, Guo S. Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage. Adv Mater. 2016;28(35):7580-7602.
|
[11] |
Pan Z, Liu X, Yang J, et al. Aqueous rechargeable multivalent metal-ion batteries: advances and challenges. Adv Energy Mater. 2021;11(24):2100608.
|
[12] |
Shin J, Choi JW. Opportunities and reality of aqueous rechargeable batteries. Adv Energy Mater. 2020;10(28):2001386.
|
[13] |
Zhang X, Lv R, Tang W, et al. Challenges and opportunities for multivalent metal anodes in rechargeable batteries. Adv Funct Mater. 2020;30(45):2004187.
|
[14] |
Wang Y, Cao Q, Guan C, Cheng C. Recent advances on self-supported arrayed bifunctional oxygen electrocatalysts for flexible solid-state Zn-air batteries. Small. 2020;16(33):2002902.
|
[15] |
Liang Y, Yao Y. Designing modern aqueous batteries. Nature Reviews Materials. 2023;8:109-122.
|
[16] |
Jiang M, Fu C, Meng P, et al. Challenges and strategies of low-cost aluminum anodes for high-performance Al-based batteries. Adv Mater. 2022;34(2):2102026.
|
[17] |
Wei C, Tan L, Zhang Y, Wang Z, Feng J, Qian Y. Towards better Mg metal anodes in rechargeable Mg batteries: challenges, strategies, and perspectives. Energy Storage Mater. 2022;52:299-319.
|
[18] |
Du W, Ang EH, Yang Y, Zhang Y, Ye M, Li CC. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ Sci. 2020;13(10):3330-3360.
|
[19] |
Wang T, Li C, Xie X, et al. Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives. ACS Nano. 2020;14(12):16321-16347.
|
[20] |
Wu M, Zhang G, Yang H, et al. Aqueous Zn-based rechargeable batteries: recent progress and future perspectives. InfoMat. 2021;4:e12265.
|
[21] |
Wu TH, Zhang Y, Althouse ZD, Liu N. Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries. Materials Today Nano. 2019;6:100032.
|
[22] |
Li TC, Fang D, Zhang J, et al. Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes. J Mater Chem A. 2021;9(10):6013-6028.
|
[23] |
Liu Y, Lu X, Lai F, et al. Rechargeable aqueous Zn-based energy storage devices. Joule. 2021;5(11):2845-2903.
|
[24] |
Hao J, Li X, Zeng X, Li D, Mao J, Guo Z. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ Sci. 2020;13(11):3917-3949.
|
[25] |
McBreen J. Nickel/zinc batteries. J Power Sources. 1994;51:37-44.
|
[26] |
Tan P, Chen B, Xu H, et al. Integration of Zn-Ag and Zn-air batteries: a hybrid battery with the advantages of both. ACS Appl Mater Interfaces. 2018;10(43):36873-36881.
|
[27] |
Yamamoyo T, Shoji T. Rechargeable Zn|ZnSO4|MnO2-type Cells. Inorg Chimica Acta. 1986;117:L27-L28.
|
[28] |
Deng Y-P, Liang R, Jiang G, Jiang Y, Yu A, Chen Z. The current state of aqueous Zn-based rechargeable batteries. ACS Energy Lett. 2020;5(5):1665-1675.
|
[29] |
Liu S, Kang L, Kim JM, Chun YT, Zhang J, Jun SC. Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries. Adv Energy Mater. 2020;10(25):2000477.
|
[30] |
Li Y, Dai H. Recent advances in zinc-air batteries. Chem Soc Rev. 2014;43(15):5257-5275.
|
[31] |
Liu J, Guan C, Zhou C, et al. A flexible quasi-solid-state nickel-zinc battery with high energy and power densities based on 3D electrode design. Adv Mater. 2016;28(39):8732-8739.
|
[32] |
Liang G, Mo F, Wang D, et al. Commencing mild Ag-Zn batteries with long-term stability and ultra-flat voltage platform. Energy Storage Mater. 2020;25:86-92.
|
[33] |
Tang Y, Li X, Lv H, et al. Stabilized Co3+/Co4+ redox pair in in situ produced CoSe2−x-derived cobalt oxides for alkaline Zn batteries with 10000-cycle lifespan and 1.9-V voltage plateau. Adv Energy Mater. 2020;10(25):2000892.
|
[34] |
Xu C, Li B, Du H, Kang F. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed. 2012;51(4):933-935.
|
[35] |
Tang B, Shan L, Liang S, Zhou J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ Sci. 2019;12(11):3288-304.
|
[36] |
Pan Z, Yang J, Yang J, et al. Stitching of Zn3(OH)2V2O7·2H2O 2D nanosheets by 1D carbon nanotubes boosts ultrahigh rate for wearable quasi-solid-state zinc-ion batteries. ACS Nano. 2019;14(1):842-853.
|
[37] |
Blanc LE, Kundu D, Nazar LF. Scientific challenges for the implementation of Zn-ion batteries. Joule. 2020;4(4):771-799.
|
[38] |
Javed MS, Lei H, Wang Z, Liu B, Cai X, Mai W. 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy. 2020;70:104573.
|
[39] |
Pan H, Shao Y, Yan P, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy. 2016;1(5):16039.
|
[40] |
Zeng X, Mao J, Hao J, et al. Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv Mater. 2021;33(11):2007416.
|
[41] |
Kang L, Cui M, Jiang F, et al. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv Energy Mater. 2018;8(25):1801090.
|
[42] |
Cao Z, Zhuang P, Zhang X, Ye M, Shen J, Ajayan PM. Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv Energy Mater. 2020;10(30):2001599.
|
[43] |
Xu J, Lv W, Yang W, et al. In situ construction of protective films on Zn metal anodes via natural protein additives enabling high-performance zinc ion batteries. ACS Nano. 2022;16(7):11392-11404.
|
[44] |
Zhang X, Li J, Qi K, et al. An ion-sieving janus separator toward planar electrodeposition for deeply rechargeable Zn-metal anodes. Adv Mater. 2022;34(38):2205175.
|
[45] |
Cao L, Li D, Pollard T, et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nature Nanotechnology. 2021;16:902-910.
|
[46] |
Guo N, Huo W, Dong X, et al. A review on 3D zinc anodes for zinc ion batteries. Small Methods. 2022;6(9):2200597.
|
[47] |
Wang SB, Ran Q, Yao RQ, et al. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat Commun. 2020;11(1):1634.
|
[48] |
Hou Z, Gao Y, Tan H, Zhang B. Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation. Nat Commun. 2021;12(1):3083.
|
[49] |
Yi Z, Chen G, Hou F, Wang L, Liang J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv Energy Mater. 2020;11(1):2003065.
|
[50] |
Yang Q, Li Q, Liu Z, et al. Dendrites in Zn-based batteries. Adv Mater. 2020;32(48):2001854.
|
[51] |
Yuan L, Hao J, Kao C-C, et al. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ Sci. 2021;14(11):5669-5689.
|
[52] |
Cao J, Zhang D, Zhang X, Zeng Z, Qin J, Huang Y. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ Sci. 2022;15(2):499-528.
|
[53] |
Qi X, Xie F, Xu Y-T, et al. Regulating desolvation and homogenized ion flux towards highly reversible dendrite-free zinc anode. Chem Eng J. 2023;453:139963.
|
[54] |
Li Q, Wang Y, Mo F, et al. Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure. Adv Energy Mater. 2021;11(14):2003931.
|
[55] |
Liang P, Yi J, Liu X, et al. Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv Funct Mater. 2020;30(13):1908528.
|
[56] |
Liu S, Lin H, Song Q, Zhu J, Zhu C. Anti-corrosion and reconstruction of surface crystal plane for Zn anodes by an advanced metal passivation technique. Energy Environ Mater. 2023;6:e12405.
|
[57] |
Han D, Wu S, Zhang S, et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small. 2020;16(29):2001736.
|
[58] |
Hao J, Li X, Zhang S, et al. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv Funct Mater. 2020;30(30):2001263.
|
[59] |
Zou Y, Yang X, Shen L, et al. Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy Environ Sci. 2022;15:5017-5038.
|
[60] |
Yang F, Yuwono JA, Hao J, et al. Understanding H2 evolution electrochemistry to minimize solvated water impact on zinc-anode performance. Adv Mater. 2022;34(45):2206754.
|
[61] |
Xie F, Li H, Wang X, et al. Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv Energy Mater. 2021;11(9):2003419.
|
[62] |
Li Z, Zhou Y, Wang Y, Lu Y-C. Solvent-mediated Li2S electrodeposition: a critical manipulator in lithium-sulfur batteries. Adv Energy Mater. 2019;9(1):1802207.
|
[63] |
Zheng J, Zhao Q, Tang T, et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science. 2019;366:645-648.
|
[64] |
Zheng J, Yin J, Zhang D, et al. Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes. Sci Adv. 2020;6:eabb1122.
|
[65] |
Wang T, Sun J, Hua Y, et al. Planar and dendrite-free zinc deposition enabled by exposed crystal plane optimization of zinc anode. Energy Storage Mater. 2022;53:273-304.
|
[66] |
Du W, Yan J, Cao C, Li CC. Electrocrystallization orientation regulation of zinc metal anodes: strategies and challenges. Energy Storage Mater. 2022;52:329-354.
|
[67] |
Zhou M, Guo S, Li J, et al. Surface-preferred crystal plane for a stable and reversible zinc anode. Adv Mater. 2021;33(21):2100187.
|
[68] |
Zeng Y, Zhang X, Qin R, et al. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv Mater. 2019;31(36):1903675.
|
[69] |
Zhang Q, Luan J, Huang X, et al. Simultaneously regulating the ion distribution and electric field to achieve dendrite-free Zn anode. Small. 2020;16(35):2000929.
|
[70] |
Pan Z, Cao Q, Gong W, et al. Zincophilic 3D ZnOHF nanowire arrays with ordered and continuous Zn2+ ion modulation layer enable long-term stable Zn metal anodes. Energy Storage Mater. 2022;50:435-443.
|
[71] |
Rosso M, Brissot C, Teyssot A, et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim Acta. 2006;51(25):5334-5340.
|
[72] |
Brissot C, Rosso M, Chazalviel J-N, Lascaud S. Dendritic growth mechanisms in lithiumrpolymer cells. J Power Sources. 1999;(81-82):925-929.
|
[73] |
Chazalviel JN. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A. 1990;42(12):7355-7367.
|
[74] |
Yang Y, Liu C, Lv Z, et al. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv Mater. 2021;33(11):2007388.
|
[75] |
Shin J, Lee J, Park Y, Choi JW. Aqueous zinc ion batteries: focus on zinc metal anodes. Chem Sci. 2020;11(8):2028-2044.
|
[76] |
Li Q, Pan H, Li W, et al. Homogeneous interface conductivity for lithium dendrite-free anode. ACS Energy Lett. 2018;3(9):2259-2266.
|
[77] |
Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries. Nat Mater. 2018;17(6):543-549.
|
[78] |
Hieu LT, So S, Kim IT, Hur J. Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life. Chem Eng J. 2021;411:128584.
|
[79] |
Park J-H, Park SH, Joung D, Kim C. Sustainable biopolymeric hydrogel interphase for dendrite-free aqueous zinc-ion batteries. Chem Eng J. 2022;433:133532.
|
[80] |
Ma L, Li Q, Ying Y, et al. Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv Mater. 2021;33(12):2007406.
|
[81] |
Guo Z, Fan L, Zhao C, et al. A dynamic and self-adapting interface coating for stable Zn-metal anodes. Adv Mater. 2022;34(2):2105133.
|
[82] |
Zhao R, Yang Y, Liu G, et al. Redirected Zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes. Adv Funct Mater. 2020;31(2):2001867.
|
[83] |
Liu Q, Wang Y, Hong X, Zhou R, Hou Z, Zhang B. Elastomer-alginate interface for high-power and high-energy Zn metal anodes. Adv Energy Mater. 2022;12(20):2200318.
|
[84] |
Zhao Z, Zhao J, Hu Z, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ Sci. 2019;12(6):1938-1949.
|
[85] |
Yu H, Chen Y, Wei W, Ji X, Chen L. A functional organic zinc-chelate formation with nanoscaled granular structure enabling long-term and dendrite-free Zn anodes. ACS Nano. 2022;16(6):9736-9747.
|
[86] |
Liu H, Wang JG, Hua W, et al. Navigating fast and uniform zinc deposition via a versatile metal-organic complex interphase. Energy Environ Sci. 2022;15(5):1872-1881.
|
[87] |
Chen R, Liu Q, Xu L, et al. Zwitterionic bifunctional layer for reversible Zn anode. ACS Energy Lett. 2022;7(5):1719-1727.
|
[88] |
Hong L, Wu X, Wang LY, et al. Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels. ACS Nano. 2022;16(4):6906-6915.
|
[89] |
Cui Y, Zhao Q, Wu X, et al. An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew Chem Int Ed. 2020;59(38):16594-16601.
|
[90] |
Chen A, Zhao C, Guo Z, et al. Stabilized Zn anode based on SO42– trapping ability and high hydrogen evolution barrier. Adv Funct Mater. 2022;32(32):2203595.
|
[91] |
Qi K, Zhu W, Zhang X, et al. Enamel-like layer of nanohydroxyapatite stabilizes Zn metal anodes by ion exchange adsorption and electrolyte pH regulation. ACS Nano. 2022;16(6):9461-9471.
|
[92] |
Cai Z, Ou Y, Wang J, et al. Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 2020;27:205-211.
|
[93] |
Li Z, Wang H, Zhong Y, Yuan L, Huang Y, Li Z. Highly reversible and anticorrosive Zn anode enabled by a Ag nanowires layer. ACS Appl Mater Interfaces. 2022;14(7):9097-9105.
|
[94] |
Li S, Fu J, Miao G, et al. Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv Mater. 2021;33(21):2008424.
|
[95] |
Hong L, Wang LY, Wang Y, et al. Toward hydrogen-free and dendrite-free aqueous zinc batteries: formation of zincophilic protective layer on Zn anodes. Adv Sci. 2022;9(6):2104866.
|
[96] |
Hao J, Li B, Li X, et al. An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv Mater. 2020;32(34):2003021.
|
[97] |
Cao P, Zhou X, Wei A, et al. Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries. Adv Funct Mater. 2021;31(20):2100398.
|
[98] |
Yang X, Li C, Sun Z, et al. Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv Mater. 2021;33(52):2105951.
|
[99] |
Wang P, Liang S, Chen C, et al. Spontaneous construction of nucleophilic carbonyl-containing interphase towards ultra-stable zinc metal anodes. Adv Mater. 2022;34(33):e2202733.
|
[100] |
Liu X, Yang F, Xu W, Zeng Y, He J, Lu X. Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes. Adv Sci. 2020;7(21):2002173.
|
[101] |
Zhang H, Li S, Xu L, et al. High-yield carbon dots interlayer for ultra-stable zinc batteries. Adv Energy Mater. 2022;12(26):2200665.
|
[102] |
Yang JL, Li J, Zhao JW, et al. Stable zinc anode enabled by zincophilic polyanionic hydrogel layer. Adv Mater. 2022;34(27):e2202382.
|
[103] |
Cui M, Xiao Y, Kang L, et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl Energy Mater. 2019;2(9):6490-6496.
|
[104] |
Deng C, Xie X, Han J, Lu B, Liang S, Zhou J. Stabilization of Zn metal anode through surface reconstruction of a cerium-based conversion film. Adv Funct Mater. 2021;31(51):2103227.
|
[105] |
Chen T, Wang Y, Yang Y, et al. Heterometallic seed-mediated zinc deposition on inkjet printed silver nanoparticles toward foldable and heat-resistant zinc batteries. Adv Funct Mater. 2021;31(24):2101607.
|
[106] |
Zhou L, Yang F, Zeng S, et al. Zincophilic Cu sites induce dendrite-free Zn anodes for robust alkaline/neutral aqueous batteries. Adv Funct Mater. 2021;32(15):2110829.
|
[107] |
Xu Z, Jin S, Zhang N, Deng W, Seo MH, Wang X. Efficient Zn metal anode enabled by O,N-codoped carbon microflowers. Nano Lett. 2022;22(3):1350-1357.
|
[108] |
Wang D, Lv D, Peng H, et al. Site-selective adsorption on ZnF2/Ag coated Zn for advanced aqueous zinc-metal batteries at low temperature. Nano Lett. 2022;22(4):1750-1758.
|
[109] |
Chen S, Chen J, Liao X, et al. Enabling low-temperature and high-rate Zn metal batteries by activating Zn nucleation with single-atomic sites. ACS Energy Lett. 2022;7:4028-4035.
|
[110] |
Li X, Li M, Luo K, et al. Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 MXenes. ACS Nano. 2021;16(1):813-822.
|
[111] |
Yan Y, Shu C, Zeng T, et al. Surface-preferred crystal plane growth enabled by underpotential deposited monolayer toward dendrite-free zinc anode. ACS Nano. 2022;16(6):9150-9162.
|
[112] |
Lu H, Jin Q, Jiang X, Dang ZM, Zhang D, Jin Y. Vertical crystal plane matching between AgZn3 (002) and Zn (002) achieving a dendrite-free zinc anode. Small. 2022;18(16):2200131.
|
[113] |
Luo B, Wang Y, Zheng S, et al. Ion pumping synergy with atomic anchoring for dendrite-free Zn anodes. Energy Storage Mater. 2022;51:610-619.
|
[114] |
Chen X, Li W, Hu S, et al. Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes. Nano Energy. 2022;98:107269.
|
[115] |
Zheng J, Cao Z, Ming F, et al. Preferred orientation of TiN coatings enables stable zinc anodes. ACS Energy Lett. 2021;7(1):197-203.
|
[116] |
Wang H, Chen Y, Yu H, et al. A multifunctional artificial interphase with fluorine-doped amorphous carbon layer for ultra-stable Zn anode. Adv Funct Mater. 2022;32(43):2205600.
|
[117] |
Zhang X, Li J, Liu D, et al. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ Sci. 2021;14(5):3120-3129.
|
[118] |
Zhao Z, Wang R, Peng C, et al. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat Commun. 2021;12(1):6606.
|
[119] |
Zhao M, Rong J, Huo F, et al. Semi-immobilized ionic liquid regulator with fast kinetics towards highly stable zinc anode under −35 °C to 60 °C. Adv Mater. 2022;34(32):e2203153.
|
[120] |
Wang R, Xin S, Chao D, et al. Fast and regulated zinc deposition in a semiconductor substrate toward high-performance aqueous rechargeable batteries. Adv Funct Mater. 2022;32:2207751.
|
[121] |
Li B, Yang K, Ma J, et al. Multicomponent copper-zinc alloy layer enabling ultra-stable zinc metal anode of aqueous Zn-ion battery. Angew Chem Int Ed. 2022;61(47):e202212587.
|
[122] |
Chen A, Zhao C, Guo Z, et al. Fast-growing multifunctional ZnMoO4 protection layer enable dendrite-free and hydrogen-suppressed Zn anode. Energy Storage Mater. 2022;44:353-359.
|
[123] |
He P, Huang J. Chemical passivation stabilizes Zn Anode. Adv Mater. 2022;34(18):2109872.
|
[124] |
Zhang L, Zhang B, Zhang T, et al. Eliminating dendrites and side reactions via a multifunctional ZnSe protective layer toward advanced aqueous Zn metal batteries. Adv Funct Mater. 2021;31(26):2100186.
|
[125] |
Zhang M, Yu P, Xiong K, Wang Y, Liu Y, Liang Y. Construction of mixed ionic-electronic conducting scaffolds in Zn powder: a scalable route to dendrite-free and flexible Zn anodes. Adv Mater. 2022;34(19):2200860.
|
[126] |
Park SH, Byeon SY, Park J-H, Kim C. Insight into the critical role of surface hydrophilicity for dendrite-free zinc metal anodes. ACS Energy Lett. 2021;6(9):3078-3085.
|
[127] |
Xiong P, Kang Y, Yuan H, et al. Galvanically replaced artificial interfacial layer for highly reversible zinc metal anodes. Applied Physics Reviews. 2022;9(1):011401.
|
[128] |
Xiao P, Li H, Fu J, et al. An anticorrosive zinc metal anode with ultra-long cycle life over one year. Energy Environ Sci. 2022;15(4):1638-1646.
|
[129] |
Wang L, Huang W, Guo W, et al. Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries. Adv Funct Mater. 2021;32(1):2108533.
|
[130] |
Wang Y, Chen Y, Liu W, et al. Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J Mater Chem A. 2021;9(13):8452-8461.
|
[131] |
Dong N, Zhao X, Yan M, Li H, Pan H. Synergetic control of hydrogen evolution and ion-transport kinetics enabling Zn anodes with high-areal-capacity. Nano Energy. 2022;104:107903.
|
[132] |
Chu Y, Zhang S, Wu S, Hu Z, Cui G, Luo J. In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ Sci. 2021;14(6):3609-3620.
|
[133] |
Liu P, Zhang Z, Hao R, et al. Ultra-highly stable zinc metal anode via 3D-printed g-C3N4 modulating interface for long life energy storage systems. Chem Eng J. 2021;403:126425.
|
[134] |
Jiang J, Pan Z, Yuan J, et al. Zincophilic polymer semiconductor as multifunctional protective layer enables dendrite-free zinc metal anodes. Chem Eng J. 2023;452:139335.
|
[135] |
Zhou J, Xie M, Wu F, et al. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv Mater. 2021;33(33):2101649.
|
[136] |
Yuksel R, Buyukcakir O, Seong WK, Ruoff RS. Metal-organic framework integrated anodes for aqueous zinc-ion batteries. Adv Energy Mater. 2020;10(16):1904215.
|
[137] |
Han W, Lee H, Liu Y, et al. Toward highly reversible aqueous zinc-ion batteries: nanoscale-regulated zinc nucleation via graphene quantum dots functionalized with multiple functional groups. Chem Eng J. 2023;452:139090.
|
[138] |
Zhang N, Huang S, Yuan Z, Zhu J, Zhao Z, Niu Z. Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew Chem Int Ed. 2020;60(6):2861-2865.
|
[139] |
Su J, Yin X, Zhao H, et al. Temperature-dependent nucleation and electrochemical performance of Zn metal anodes. Nano Lett. 2022;22(4):1549-1556.
|
[140] |
Wang Z, Huang J, Guo Z, et al. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule. 2019;3(5):1289-1300.
|
[141] |
Tian Y, An Y, Liu C, Xiong S, Feng J, Qian Y. Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Storage Mater. 2021;41:343-353.
|
[142] |
Wang Y, Guo T, Yin J, et al. Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv Mater. 2022;34(4):2106937.
|
[143] |
Chen Z, Zhao J, He Q, et al. Texture control of commercial Zn foils prolongs their reversibility as aqueous battery anodes. ACS Energy Lett. 2022;7(10):3564-3571.
|
[144] |
Pu SD, Gong C, Tang YT, et al. Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes. Adv Mater. 2022;34(28):2202552.
|
[145] |
Wang W, Huang G, Wang Y, et al. Organic acid etching strategy for dendrite suppression in aqueous zinc-ion batteries. Adv Energy Mater. 2022;12(6):2102797.
|
[146] |
Guo W, Cong Z, Guo Z, et al. Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries. Energy Storage Mater. 2020;30:104-112.
|
[147] |
Bie Z, Yang Q, Cai X, et al. One-step construction of a polyporous and zincophilic interface for stable zinc metal anodes. Adv Energy Mater. 2022;12(44):2202683.
|
[148] |
Chen J, Qiao X, Han X, et al. Releasing plating-induced stress for highly reversible aqueous Zn metal anodes. Nano Energy. 2022;103:107814.
|
[149] |
Fan X-Y, Yang H, Feng B, et al. Rationally designed In@Zn@In trilayer structure on 3D porous Cu towards high-performance Zn-Ion batteries. Chem Eng J. 2022;445:136799.
|
[150] |
Sun PX, Cao Z, Zeng YX, et al. Formation of super-assembled TiOx/Zn/N-doped carbon inverse opal towards dendrite-free Zn anodes. Angew Chem Int Ed. 2021;134(7):e202115649.
|
[151] |
Yin J, Wang Y, Zhu Y, et al. Regulating the redox reversibility of zinc anode toward stable aqueous zinc batteries. Nano Energy. 2022;99:107331.
|
[152] |
An Y, Tian Y, Xiong S, Feng J, Qian Y. Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano. 2021;15(7):11828-11842.
|
[153] |
Zeng Y, Sun PX, Pei Z, et al. Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn metal anodes. Adv Mater. 2022;34(18):2200342.
|
[154] |
Yu H, Zeng Y, Li NW, Luan D, Yu L, Lou XW. Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-free Zn metal anodes. Sci Adv. 2022;8:eabm5766.
|
[155] |
Yang J-L, Yang P, Yan W, Zhao J-W, Fan HJ. 3D zincophilic micro-scaffold enables stable Zn deposition. Energy Storage Mater. 2022;51:259-265.
|
[156] |
Ling W, Yang Q, Mo F, et al. An ultrahigh rate dendrite-free Zn metal deposition/striping enabled by silver nanowire aerogel with optimal atomic affinity with Zn. Energy Storage Mater. 2022;51:453-464.
|
[157] |
Tao Y, Zuo SW, Xiao SH, et al. Atomically dispersed Cu in zeolitic imidazolate framework nanoflake array for dendrite-free Zn metal anode. Small. 2022;18(30):2203231.
|
[158] |
Cao Q, Gao H, Gao Y, et al. Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv Funct Mater. 2021;31(37):2103922.
|
[159] |
Cui M, Yan B, Mo F, et al. In-situ grown porous protective layers with high binding strength for stable Zn anodes. Chem Eng J. 2022;434:134688.
|
[160] |
Zhou W, Wu T, Chen M, et al. Wood-based electrodes enabling stable, anti-freezing, and flexible aqueous zinc-ion batteries. Energy Storage Mater. 2022;51:286-293.
|
[161] |
Yu H, Li Q, Liu W, et al. Fast ion diffusion alloy layer facilitating 3D mesh substrate for dendrite-free zinc-ion hybrid capacitors. J Energy Chem. 2022;73:565-574.
|
[162] |
Jian Q, Guo Z, Zhang L, Wu M, Zhao T. A hierarchical porous tin host for dendrite-free, highly reversible zinc anodes. Chem Eng J. 2021;425:130643.
|
[163] |
Xue P, Guo C, Li L, et al. A MOF-derivative decorated hierarchical porous host enabling ultrahigh rates and superior long-term cycling of dendrite-free Zn metal anodes. Adv Mater. 2022;34(14):2110047.
|
[164] |
Guo R, Liu X, Xia F, et al. Large-scale integration of zinc metasilicate interface layer guiding well-regulated Zn deposition. Adv Mater. 2022;34(27):e2202188.
|
[165] |
Wang T, Xi Q, Li Y, et al. Regulating dendrite-free zinc deposition by red phosphorous-derived artificial protective layer for zinc metal batteries. Adv Sci. 2022;9(18):2200155.
|
[166] |
Xie X, Liang S, Gao J, et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ Sci. 2020;13(2):503-510.
|
[167] |
Kim JY, Liu G, Shim GY, Kim H, Lee JK. Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes. Adv Funct Mater. 2020;30(36):2004210.
|
[168] |
Liu H, Li J, Zhang X, et al. Ultrathin and ultralight Zn micromesh-induced spatial-selection deposition for flexible high-specific-energy Zn-ion batteries. Adv Funct Mater. 2021;31(48):2106550.
|
[169] |
Zhang G, Zhang X, Liu H, Li J, Chen Y, Duan H. 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv Energy Mater. 2021;11(19):2003927.
|
[170] |
Jin H, Luo Y, Qi B, et al. Interfacial engineering regulates deposition kinetics of zinc metal anodes. ACS Appl Energy Mater. 2021;4(10):11743-11751.
|
[171] |
Huang Z, Li H, Yang Z, et al. Nanosecond laser lithography enables concave-convex zinc metal battery anodes with ultrahigh areal capacity. Energy Storage Mater. 2022;51:273-285.
|
[172] |
Cao Q, Pan Z, Gao Y, et al. Stable imprinted zincophilic Zn anodes with high capacity. Adv Funct Mater. 2022;32(41):2205771.
|
[173] |
Shen Z, Luo L, Li C, et al. Stratified zinc-binding strategy toward prolonged cycling and flexibility of aqueous fibrous zinc metal batteries. Adv Energy Mater. 2021;11(16):2100214.
|
[174] |
Gao Y, Cao Q, Pu J, et al. Stable Zn anodes with triple gradients. Adv Mater. 2023;35:2207573.
|
[175] |
Wu B, Guo B, Chen Y, et al. High zinc utilization aqueous zinc ion batteries enabled by 3D printed graphene arrays. Energy Storage Mater. 2023;54:75-84.
|
[176] |
Wang F, Lu H, Li H, et al. Demonstrating U-shaped zinc deposition with 2D metal-organic framework nanoarrays for dendrite-free zinc batteries. Energy Storage Mater. 2022;50:641-647.
|
[177] |
An Y, Tian Y, Liu C, Xiong S, Feng J, Qian Y. Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano. 2021;15(9):15259-15273.
|
[178] |
Zhou J, Wu F, Mei Y, et al. Establishing thermal infusion method for stable zinc metal anodes in aqueous zinc-ion batteries. Adv Mater. 2022;34(21):2200782.
|
[179] |
Su TT, Wang K, Chi BY, Ren WF, Sun RC. Stripy zinc array with preferential crystal plane for the ultra-long lifespan of zinc metal anodes for zinc ion batteries. EcoMat. 2022;4(6):e12219.
|
[180] |
Wang C, Wang A, Ren L, et al. Controlling Li ion flux through materials innovation for dendrite-free lithium metal anodes. Adv Funct Mater. 2019;29(49):1905940.
|
[181] |
Li L, Liu W, Dong H, et al. Surface and interface engineering of nanoarrays toward advanced electrodes and electrochemical energy storage devices. Adv Mater. 2021;33(13):2004959.
|
[182] |
Zeng L, He H, Chen H, Luo D, He J, Zhang C. 3D printing architecting reservoir-integrated anode for dendrite-free, safe, and durable Zn batteries. Adv Energy Mater. 2022;12(12):2103708.
|
[183] |
Wu J, Ju Z, Zhang X, et al. Gradient design for high-energy and high-power batteries. Adv Mater. 2022;34(29):2202780.
|
[184] |
Liang G, Zhu J, Yan B, et al. Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy Environ Sci. 2022;15(3):1086-1096.
|
[185] |
Li H, Guo C, Zhang T, et al. Hierarchical confinement effect with zincophilic and spatial traps stabilized Zn-based aqueous battery. Nano Lett. 2022;22(10):4223-4231.
|
[186] |
Li Q, Chen A, Wang D, Pei Z, Zhi C. “Soft shorts” hidden in zinc metal anode research. Joule. 2022;6(2):273-279.
|
/
〈 | 〉 |