Enhanced integrated reliability-based algorithm for identifying the optimal gene knockout in strain optimization

Ridho Ananda , Kauthar Mohd Daud , Suhaila Zainudin

Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (2) : 37

PDF
Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (2) :37 DOI: 10.1007/s43393-025-00431-7
Original Article
research-article

Enhanced integrated reliability-based algorithm for identifying the optimal gene knockout in strain optimization

Author information +
History +
PDF

Abstract

This study developed an enhanced reliability-based integrating (RBI) algorithm by incorporating metaheuristic optimization algorithms into the RBI framework in order to identify optimal gene knockout for strain optimization. To enhance the RBI algorithm, nine metaheuristic optimizations were used: aquila optimization (AO), differential search algorithm (DSA), genetic algorithm (GA), genetic algorithm based on natural selection theory (GABONST), grey wolf optimizer (GWO), komodo mlipir algorithm (KMA), particle swarm optimization (PSO), simulated annealing (SA), and whale optimization algorithm (WOA). The algorithms were simulated with six microbial strain models to optimize the production of succinate and ethanol under aerobic and anaerobic conditions. The analysis indicated that the enhanced algorithms have effectively identified the optimal gene knockout. Furthermore, the three most effective algorithms identified were WOARBI, GWORBI, and GABONSTRBI, which produced optimal mutant strains with the highest succinate or ethanol production rates. This study’s results demonstrated that the metaheuristic optimization algorithms effectively improved the performance of the RBI algorithm.

Keywords

In silico / Metabolic engineering / Strain optimization / Metaheuristic / Gene regulatory networks / Metabolic networks

Cite this article

Download citation ▾
Ridho Ananda, Kauthar Mohd Daud, Suhaila Zainudin. Enhanced integrated reliability-based algorithm for identifying the optimal gene knockout in strain optimization. Systems Microbiology and Biomanufacturing, 2026, 6(2): 37 DOI:10.1007/s43393-025-00431-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Singhania RR, Patel AK, Tseng Y-S, Kumar V, Chen C-W, Haldar D, Saini JK, Dong C-D. Developments in bioprocess for bacterial cellulose production. Bioresour Technol, 2022, 344: 126343

[2]

Sharma D, Saharan BS. Microbial cell factories, 2018, Boca Raton, FL, CRC Press, Taylor & Francis group

[3]

Joshi S, Mishra S. Recent advances in biofuel production through metabolic engineering. Bioresour Technol, 2022, 352: 127037

[4]

Daud KM, Ananda R, Zainudin S, Howe CW. Optimizing the production of valuable metabolites using a hybrid of constraint-based model and machine learning algorithms: a review. Int J Adv Comput Sci Appl., 2023, 14: 1091

[5]

Fell DA, Small JR. Fat synthesis in adipose tissue. an examination of stoichiometric constraints. Biochem J, 1986, 238(3): 781-786

[6]

Saa P, Urrutia A, Silva-Andrade C, Martín AJ, Garrido D. Modeling approaches for probing cross-feeding interactions in the human gut microbiome. Comput Struct Biotechnol J, 2022, 20: 79-89

[7]

Daud KM, Mohamad MS, Zakaria Z, Hassan R, Shah ZA, Deris S, Ibrahim Z, Napis S, Sinnott RO. A non-dominated sorting differential search algorithm flux balance analysis (ndsDSAFBA) for in silico multiobjective optimization in identifying reactions knockout. Comput Biol Med, 2019, 113: 103390

[8]

Sen P. Flux balance analysis of metabolic networks for efficient engineering of microbial cell factories. Biotechnol Genet Eng Rev, 2024, 40(43682-3715

[9]

Ananda R, Daud KM, Zainudin S. Non-dominated sorting differential search algorithm for optimizing regulatory-metabolic networks by using probabilistic approach. In: 2023 International conference on electrical engineering and informatics (ICEEI). Bandung, Indonesia: IEEE; 2023. pp. 1–6. https://doi.org/10.1109/ICEEI59426.2023.10346837.

[10]

Ye C, Yang Y, Chen X, Yang L, Hua X, Yang M, Zeng X, Qiao S. Metabolic engineering of Escherichia coli BW25113 for the production of 5-Aminolevulinic Acid based on CRISPR/Cas9 mediated gene knockout and metabolic pathway modification. J Biol Eng, 2022, 16(126

[11]

Sabzevari M, Szedmak S, Penttilä M, Jouhten P, Rousu J. Strain design optimization using reinforcement learning. PLoS Comput Biol, 2022, 18(61010177

[12]

Ananda R, Daud KM, Zainudin S. A review of advances in integrating gene regulatory networks and metabolic networks for designing strain optimization. J King Saud Univ Comput Inf Sci, 2024, 36(6102120

[13]

Covert MW, Palsson BO. Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem, 2002, 277(3128058-28064

[14]

Shlomi T, Eisenberg Y, Sharan R, Ruppin E. A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol Syst Biol, 2007, 3(1): 101

[15]

Covert MW, Xiao N, Chen TJ, Karr JR. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics, 2008, 24(182044-2050

[16]

Chandrasekaran S, Price ND. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and mycobacterium tuberculosis. Proc Natl Acad Sci, 2010, 107(41): 17845-17850

[17]

Motamedian E, Mohammadi M, Shojaosadati SA, Heydari M. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data. Bioinformatics, 2017, 33(7): 1057-1063

[18]

Ananda R, Daud KM, Zainudin S. RBI: a novel algorithm for regulatory-metabolic network model in designing the optimal mutant strain. PeerJ Comput Sci, 2025, 11: 2880

[19]

Raman K. An introduction to computational systems biology: systems-level modelling of cellular networks, 2021, Milton, Chapman and Hall/CRC Computational Biology Ser. CRC Press LLC

[20]

Dzulkalnine MF, Mohamad MS, Choon YW, Remli MA. Optimizing ethanol production in escherichia coli using a hybrid of particle swarm optimization and artificial bee colony. In: 2022 The 6th international conference on advances in artificial intelligence. Birmingham UK: ACM; 2022. pp. 140–6. https://doi.org/10.1145/3571560.3571581.

[21]

Tan JB, Choon YW, Moorthy K, Adli HK, Remli MA, Ismail MA, Ibrahim Z, Mohamad MS. A hybrid of ant colony optimization, genetic algorithm and flux balance analysis for optimization of succinic acid production in escherichia coli. Int J Model Simul Sci Comput, 2023, 14(04): 2350040

[22]

Shen F, Sun R, Yao J, Li J, Liu Q, Price ND, Liu C, Wang Z. OptRAM: in-silico strain design via integrative regulatory-metabolic network modeling. PLoS Comput Biol, 2019, 15(31006835

[23]

Ananda R, Daud KM, Zainudin S. An enhanced flux balance analysis based on the state-of-the-art metaheuristics for optimizing succinate production. In: 2024 IEEE international conference on communication, networks and satellite (COMNETSAT). Mataram, Indonesia: IEEE; 2024. pp. 413–20. https://doi.org/10.1109/COMNETSAT63286.2024.10862711.

[24]

Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw, 2014, 69: 46-61

[25]

Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw, 2016, 95: 51-67

[26]

Albadr MA, Tiun S, Ayob M, AL-Dhief F. Genetic algorithm based on natural selection theory for optimization problems. Symmetry, 2020, 12(111758

[27]

Suyanto S, Ariyanto AA, Ariyanto AF. Komodo Mlipir algorithm. Appl Soft Comput, 2022, 114: 108043

[28]

Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness MAA, Gandomi AH. Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng, 2021, 157: 107250

[29]

Orth JD, Fleming RMT, Palsson BO. Reconstruction and use of microbial metabolic networks: the core Escherichia coli metabolic model as an educational guide. EcoSal Plus, 2010, 4(110-11281021

[30]

Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol, 2007, 3(1121

[31]

Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BO. A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Mol Syst Biol, 2011, 7(1535

[32]

Mo ML, Palsson BO, Herrgård MJ. Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol, 2009, 3(137

[33]

Österlund T, Nookaew I, Bordel S, Nielsen J. Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst Biol, 2013, 7(136

[34]

Aung HW, Henry SA, Walker LP. Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind Biotechnol, 2013, 9(4215-228

[35]

Pereira R, Nielsen J, Rocha I. Improving the flux distributions simulated with genome-scale metabolic models of Saccharomyces cerevisiae. Metab Eng Commun, 2016, 3: 153-163

[36]

Lopes H, Rocha I. Genome-scale modeling of yeast: chronology, applications and critical perspectives. FEMS Yeast Res, 2017, 17(5) fox050: fox050

[37]

Grimbs A, Klosik DF, Bornholdt S, Hütt M-T. A system-wide network reconstruction of gene regulation and metabolism in Escherichia coli. PLoS Comput Biol, 2019, 15(5): 1006962

[38]

Herrgård MJ, Lee B-S, Portnoy V, Palsson BO. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in saccharomyces cerevisiae. Genome Res, 2006, 16(5627-635

[39]

Ismail MA, Deris S, Mohamad MS, Abdullah A. A newton cooperative genetic algorithm method for in silico optimization of metabolic pathway production. PLoS ONE, 2015, 10(50126199

[40]

Shami TM, El-Saleh AA, Alswaitti M, Al-Tashi Q, Summakieh MA, Mirjalili S. Particle swarm optimization: a comprehensive survey. IEEE Access, 2022, 10: 10031-10061

[41]

Civicioglu P. Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput Geosci, 2012, 46: 229-247

[42]

Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Nachdr. Complex adaptive systems: MIT Press, Cambridge, Mass; 2010.

[43]

Ghannadi P, Kourehli SS, Mirjalili S. A review of the application of the simulated annealing algorithm in structural health monitoring (1995–2021). Frattura ed Integrità Strutturale, 2023, 17(6451-76

[44]

Bai L, Sun J, Palade V, Li C, Lu H, Gao C. Optimizing metabolite production with neighborhood-based binary quantum-behaved particle swarm optimization and flux balance analysis. J Comput Biol, 2025, 32(1): 64-88

[45]

Feist AM, Palsson BO. The biomass objective function. Curr Opin Microbiol, 2010, 13(3): 344-349

[46]

Von Kamp A, Klamt S. Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms. Nat Commun, 2017, 8(1): 15956

[47]

Halim AH, Ismail I, Das S. Performance assessment of the metaheuristic optimization algorithms: an exhaustive review. Artif Intell Rev, 2021, 54(32323-2409

[48]

Tan HL, Yin L, Tan Y, Ivanov J, Plucinska K, Ilanges A, Herb BR, Wang P, Kosse C, Cohen P, Lin D, Friedman JM. Leptin-activated hypothalamic BNC2 neurons acutely suppress food intake. Nature, 2024, 636(8041): 198-205

[49]

Diaz-Escobar J, Ordóñez-Guillén NE, Villarreal-Reyes S, Galaviz-Mosqueda A, Kober V, Rivera-Rodriguez R, Lozano Rizk JE. Deep-learning based detection of COVID-19 using lung ultrasound imagery. PLoS ONE, 2021, 16(8): 0255886

[50]

Ananda R, Prasetiadi A. Hierarchical and k-means clustering in the line drawing data shape using procrustes analysis. JOIV Int J Inform, 2021, 5(3306

[51]

Lin H, Bennett GN, San K-Y. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab Eng, 2005, 7(2116-127

[52]

Furukawa K, Heinzle E, Dunn IJ. Influence of oxygen on the growth of saccharomyces cerevisiae in continuous culture. Biotechnol Bioeng, 1983, 25(10): 2293-2317

[53]

Agbangba CE, Sacla Aide E, Honfo H, Glèlè Kakai R. On the use of post-hoc tests in environmental and biological sciences: a critical review. Heliyon, 2024, 10(3): 25131

[54]

Ning G, Zhou Y. Application of improved differential evolution algorithm in solving equations. Int J Comput Intell Syst, 2021, 14(1199

[55]

Malcı K, Santibáñez R, Jonguitud-Borrego N, Santoyo-Garcia JH, Kerkhoven EJ, Rios-Solis L. Improved production of taxol®precursors in S. cerevisiae using combinatorial in silico design and metabolic engineering. Microb Cell Fact, 2023, 22(1243

[56]

Gao C, Tang W, Guo L, Hu G, Liu J, Liu L, Chen X. Improving succinate production by engineering oxygen-dependent dynamic pathway regulation in Escherichia coli. Syst Microbiol Biom, 2022, 2(2331-344

[57]

Yang P, Jiang S, Lu S, Jiang S, Jiang S, Deng Y, Lu J, Wang H, Zhou Y. Ethanol yield improvement in saccharomyces cerevisiae GPD2 Delta FPS1 Delta ADH2 Delta DLD3 Delta mutant and molecular mechanism exploration based on the metabolic flux and transcriptomics approaches. Microb Cell Fact, 2022, 21(1): 160

[58]

Shrivastava M, Kouyoumdjian GS, Kirbizakis E, Ruiz D, Henry M, Vincent AT, Sellam A, Whiteway M. The Adr1 transcription factor directs regulation of the ergosterol pathway and azole resistance in i. mBio, 2023, 14(501807-23

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/