Metabolic engineering of Klebsiella pneumoniae for enhanced 1,3-propanediol production

Cong Gao , Shaolun Zhang , Guangjie Liang , Kaifang Liu , Jia Liu , Liming Liu

Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (2) : 31

PDF
Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (2) :31 DOI: 10.1007/s43393-025-00430-8
Original Article
research-article

Metabolic engineering of Klebsiella pneumoniae for enhanced 1,3-propanediol production

Author information +
History +
PDF

Abstract

1,3-propanediol (1,3-PDO) is an important monomer for polyester production with broad industrial applications. Klebsiella pneumoniae is currently recognized as a highly efficient producer of 1,3-PDO. However, the higher cost of glycerol substrate compared with glucose limits the economic feasibility of this route. In the present study, the K. pneumoniae strain FMME-KP was extensively engineered for efficient 1,3-PDO production from glucose. Strategies included the introduction of a glycerol synthetic pathway from glucose, balancing carbon distribution between biomass formation and product synthesis, alleviating carbon catabolite repression, and strengthening the 1,3-PDO biosynthetic route. The optimized strain, K. pneumoniae GZ31, produced 84.7 g/L of 1,3-PDO, achieving a yield of 0.51 g/g and a productivity of 1.74 g/L/h.

Keywords

1,3-Propanediol / Metabolic engineering / Klebsiella pneumoniae / Glucose substrate

Cite this article

Download citation ▾
Cong Gao, Shaolun Zhang, Guangjie Liang, Kaifang Liu, Jia Liu, Liming Liu. Metabolic engineering of Klebsiella pneumoniae for enhanced 1,3-propanediol production. Systems Microbiology and Biomanufacturing, 2026, 6(2): 31 DOI:10.1007/s43393-025-00430-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiang W, Cai Y, Sun S, Wang W, Tišma M, Baganz F, Hao J. Inactivation of hydrogenase-3 leads to enhancement of 1,3-propanediol and 2,3-butanediol production by Klebsiella pneumoniae. Enzyme Microb Technol, 2024, 177 110438

[2]

Okolie JA. Insights on production mechanism and industrial applications of renewable propylene glycol. iScience, 2022, 25 104903

[3]

Wang Y, Huang J, Liang X, Wei M, Liang F, Feng D, Xu C, Xian M, Zou H. Production and waste treatment of polyesters: application of bioresources and biotechniques. Crit Rev Biotechnol, 2023, 43: 503-520

[4]

Li Z, Dong Y, Liu Y, Cen X, Liu D, Chen Z. Systems metabolic engineering of Corynebacterium glutamicum for high-level production of 1,3-propanediol from glucose and xylose. Metab Eng, 2022, 70: 79-88

[5]

Zhu F, Liu D, Chen Z. Recent advances in biological production of 1,3-propanediol: new routes and engineering strategies. Green Chem, 2022, 24: 1390-1403

[6]

Marr AC. 1,3-propanediol, an exemplary bio-renewable organic platform chemical. Adv Synth Catal, 2024, 366: 4835-4845

[7]

Fokum E, Zabed HM, Yun J, Zhang G, Qi X. Recent technological and strategical developments in the biomanufacturing of 1,3-propanediol from glycerol. Int J Environ Sci Technol, 2021, 18: 2467-2490

[8]

Lama S, Seol E, Park S. Development of Klebsiella pneumoniae J2B as microbial cell factory for the production of 1,3-propanediol from glucose. Metab Eng, 2020, 62: 116-125

[9]

Wang XL, Sun YQ, Pan DT, Xiu ZL. Kinetics-based development of two-stage continuous fermentation of 1,3-propanediol from crude glycerol by Clostridium butyricum. Biotechnol Biofuels Bioprod, 2024, 17: 38

[10]

Agrawal D, Budakoti M, Kumar V. Strategies and tools for the biotechnological valorization of glycerol to 1,3-propanediol: challenges, recent advancements and future outlook. Biotechnol Adv, 2023, 66 108177

[11]

Ju JH, Heo SY, Choi SW, Kim YM, Kim MS, Kim CH, Oh BR. Effective bioconversion of 1,3-propanediol from biodiesel-derived crude glycerol using organic acid resistance-enhanced Lactobacillus reuteri JH83. Bioresour Technol, 2021, 337 125361

[12]

Budakoti M, Bhandari S, Agrawal D, Kumar V. Unveiling the potential of a novel alkalophilic Citrobacter freundii IIPDR3 strain in valorizing glycerol to 1,3-propanediol. Biomass Conv Bioref, 2024, 15: 17649-17664

[13]

Ashoor S, Yao Z, Song CW, Lee HL, Seong HJ, Palaniswamy S, Park JM, Song H, Jang Y-S. Efficient production of 1,3-propanediol from glycerol by a newly isolated soil bacterium using fed-batch fermentation. Biotechnol Bioprocess Eng, 2024, 29: 353-359

[14]

Wang XL, Zhou JJ, Liu S, Sun YQ, Xiu ZL. In situ carbon dioxide capture to co-produce 1,3-propanediol, biohydrogen and micro-nano calcium carbonate from crude glycerol by Clostridium butyricum. Biotechnol Biofuels Bioprod, 2022, 15: 91

[15]

Wang Y, Wan Z, Zhu Y, Hu H, Jiang Y, Jiang W, Zhang W, Xin F. Enhanced 1,3-propanediol production with high yield from glycerol through a novel Klebsiella-Shewanella co-culture. Biotechnol Biofuels Bioprod, 2023, 16: 50

[16]

Yun J, Zabed HM, Zhang Y, Zhang G, Zhao M, Qi X. Improving tolerance and 1,3-propanediol production of Clostridium butyricum using physical mutagenesis, adaptive evolution and genome shuffling. Bioresour Technol, 2022, 363: 127967

[17]

Mezzina MP, Alvarez DS, Egoburo DE, Diaz Pena R, Nikel PI, Pettinari MJ. A new player in the biorefineries field: phasin PhaP enhances tolerance to solvents and boosts ethanol and 1,3-propanediol synthesis in Escherichia coli. Appl Environ Microbiol, 2017, 83: e00662-00617

[18]

Yang M, An Y, Zabed HM, Guo Q, Yun J, Zhang G, Awad FN, Sun W, Qi X. Random mutagenesis of Clostridium butyricum strain and optimization of biosynthesis process for enhanced production of 1,3-propanediol. Bioresour Technol, 2019, 284: 188-196

[19]

Zhang S, Zhang F, Sun J, Yu H, Sun P, Liu J, Li X, Hu G, Wu J, Gao C, Liu L. Systems metabolic engineering of Klebsiella pneumoniae for high-level 1,3-propanediol production. Metab Eng, 2026, 93: 1-13

[20]

Yang X, Choi HS, Lee JH, Lee SK, Han SO, Park C, Kim SW. Improved production of 1,3-propanediol from biodiesel-derived crude glycerol by Klebsiella pneumoniae in fed-batch fermentation. Chem Eng J, 2018, 349: 25-36

[21]

Lee JH, Jung MY, Oh MK. High-yield production of 1,3-propanediol from glycerol by metabolically engineered Klebsiella pneumoniae. Biotechnol Biofuels, 2018, 11: 104

[22]

Lee J, Islam T, Cho S, Arumugam N, Gaur VK, Park S. Energy metabolism coordination for the byproduct-free biosynthesis of 1,3-propanediol in Escherichia coli. Bioresour Technol, 2025, 421: 132147

[23]

Avilez LAC, Vieira PB, Bresciani AE, Perpetuo EA, Nascimento CAO, Alves RMB. Glycerol and glucose co-fermentation by 1,3-propanediol producer Limosilactobacillus reuteri: a kinetic study of batch and continuous cultivations. Biofuels Bioprod Bioref, 2023, 18: 55-69

[24]

Tang X, Tan Y, Zhu H, Zhao K, Shen W. Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol, 2009, 75: 1628-1634

[25]

Ju J-H, Wang D, Heo S-Y, Kim M-S, Seo J-W, Kim Y-M, Kim D-H, Kang S-A, Kim C-H, Oh B-R. Enhancement of 1,3-propanediol production from industrial by-product by Lactobacillus reuteri CH53. Microb Cell Fact, 2020, 19: 6

[26]

Zhang Y, Ma C, Dischert W, Soucaille P, Zeng AP. Engineering of phosphoserine aminotransferase increases the conversion of L-homoserine to 4-hydroxy-2-ketobutyrate in a glycerol-independent pathway of 1,3-propanediol production from glucose. Biotechnol J, 2019, 14: e1900003

[27]

Li Z, Wu Z, Cen X, Liu Y, Zhang Y, Liu D, Chen Z. Efficient production of 1,3-propanediol from diverse carbohydrates via a non-natural pathway using 3-hydroxypropionic acid as an intermediate. ACS Synth Biol, 2021, 10: 478-486

[28]

Li M, Zhang Y, Li J, Tan T. Biosynthesis of 1,3-propanediol via a new pathway from glucose in Escherichia coli. ACS Synth Biol, 2023, 12: 2083-2093

[29]

Wang Y, Wang S, Chen W, Song L, Zhang Y, Shen Z, Yu F, Li M, Ji Q. CRISPR-Cas9 and CRISPR-assisted cytidine deaminase enable precise and efficient genome editing in Klebsiella pneumoniae. Appl Environ Microbiol, 2018, 84: e01834-e1818

[30]

Meynial Salles I, Forchhammer N, Croux C, Girbal L, Soucaille P. Evolution of a Saccharomyces cerevisiae metabolic pathway in Escherichia coli. Metab Eng, 2007, 9: 152-159

[31]

Khankal R, Chin JW, Ghosh D, Cirino PC. Transcriptional effects of CRP* expression in Escherichia coli. J Biol Eng, 2009, 3: 13

[32]

Yuan D, Liu B, Yuan X, Feng L, Xu X, Zhu J, Chen Z, Xu R, Chen J, Xu G, Lin J, Yang L, Li M, Lian J, Wu M. Multisite mutation of the Escherichia coli CAMP receptor protein: enhancing xylitol biosynthesis by activating xylose catabolism and improving strain tolerance. J Agric Food Chem, 2023, 71: 17226-17234

[33]

Zhang Y, Yun J, Zabed HM, Dou Y, Zhang G, Zhao M, Taherzadeh MJ, Ragauskas A, Qi X. High-level co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol: metabolic engineering and process optimization. Bioresour Technol, 2023, 369: 128438

[34]

Zhang Y, Zabed HM, Yun J, Zhang G, Wang Y, Qi X. Notable improvement of 3-hydroxypropionic acid and 1,3-propanediol coproduction using modular coculture engineering and pathway rebalancing. ACS Sustain Chem Eng, 2021, 9: 4625-4637

[35]

Yun J, Zabed HM, Zhang Y, Parvez A, Zhang G, Qi X. Co-fermentation of glycerol and glucose by a co-culture system of engineered Escherichia coli strains for 1,3-propanediol production without vitamin B12 supplementation. Bioresour Technol, 2021, 319: 124218

[36]

Zhang Y, Li Z, Liu Y, Cen X, Liu D, Chen Z. Systems metabolic engineering of Vibrio natriegens for the production of 1,3-propanediol. Metab Eng, 2021, 65: 52-65

[37]

Gao C, Wang S, Hu G, Guo L, Chen X, Xu P, Liu L. Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning. Biotechnol Bioeng, 2018, 115: 661-672

[38]

Gao C, Guo L, Hu G, Liu J, Chen X, Xia X, Liu L. Engineering a CRISPRi circuit for autonomous control of metabolic flux in Escherichia coli. ACS Synth Biol, 2021, 10: 2661-2671

[39]

Wang W, Yu X, Wei Y, Ledesma-Amaro R, Ji X-J. Reprogramming the metabolism of Klebsiella pneumoniae for efficient 1,3-propanediol production. Chem Eng Sci, 2021, 236: 116539

[40]

Oh B-R, Hong W-K, Heo S-Y, Luo LH, Kondo A, Seo J-W, Kim CH. The production of 1,3-propanediol from mixtures of glycerol and glucose by a Klebsiella pneumoniae mutant deficient in carbon catabolite repression. Bioresour Technol, 2013, 130: 719-724

[41]

Yang H, He Y, Zhou S, Deng Y. Dynamic regulation and cofactor engineering of Escherichia coli to enhance production of glycolate from corn stover hydrolysate. Bioresour Technol, 2024, 398 130531

[42]

Gao C, Hou J, Xu P, Guo L, Chen X, Hu G, Ye C, Edwards H, Chen J, Chen W, Liu L. Programmable biomolecular switches for rewiring flux in Escherichia coli. Nat Commun, 2019, 10: 3751

[43]

Fujiwara R, Noda S, Tanaka T, Kondo A. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate. Nat Commun, 2020, 11: 279

[44]

Hou J, Gao C, Guo L, Nielsen J, Ding Q, Tang W, Hu G, Chen X, Liu L. Rewiring carbon flux in Escherichia coli using a bifunctional molecular switch. Metab Eng, 2020, 61: 47-57

[45]

Gao C, Guo L, Ding Q, Hu G, Ye C, Liu J, Chen X, Liu L. Dynamic consolidated bioprocessing for direct production of xylonate and shikimate from xylan by Escherichia coli. Metab Eng, 2020, 60: 128-137

Funding

National Natural Science Foundation of China(22378164, 32470059)

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

8

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/