Exploring the regulatory role of RNase III (Rnc) and protein–protein interaction network during stress responses in Nostoc PCC 7524

Srabani Kar , Eetika Chot , Nirjara Singhvi , Vipin Gupta , Pratyoosh Shukla

Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) : 24

PDF
Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) :24 DOI: 10.1007/s43393-025-00425-5
Original Article
research-article

Exploring the regulatory role of RNase III (Rnc) and protein–protein interaction network during stress responses in Nostoc PCC 7524

Author information +
History +
PDF

Abstract

Cyanobacteria are abundant autotrophic prokaryotes that can survive in changing environmental conditions by modifying their transcriptomes through different regulatory pathways. The Rnc and Mrnc proteins crucially regulate gene expression by functioning in RNA processing at the post-transcriptional level under both standard and environmental stress conditions. Despite the critical roles of Rnc and Mrnc in cyanobacteria, their structural attributes have not been extensively studied till date, either computationally or experimentally. Therefore, in the current study, we investigated the structure of Rnc and Mrnc proteins in Nostoc PCC 7524, a well-studied organism for the production of bio-fertilisers and metabolites. Further, the structural stability and compactness of both the proteins were established through in silico docking and molecular dynamics simulations to understand their biological significance and role in adaptation to stressful environmental conditions. Conclusively, the obtained stable Rnc and Mrnc complex from Nostoc sp. PCC 7524 suggests its potential unexplored role in gene regulation and cellular stress adaptation.

Keywords

Nostoc PCC 7524 / RNase III (Rnc) / Stress response / Molecular docking / Molecular dynamics simulation / Protein–protein interaction

Cite this article

Download citation ▾
Srabani Kar, Eetika Chot, Nirjara Singhvi, Vipin Gupta, Pratyoosh Shukla. Exploring the regulatory role of RNase III (Rnc) and protein–protein interaction network during stress responses in Nostoc PCC 7524. Systems Microbiology and Biomanufacturing, 2026, 6(1): 24 DOI:10.1007/s43393-025-00425-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hagemann M, Hess WR. Systems and synthetic biology for the biotechnological application of cyanobacteria. Curr Opin Biotechnol, 2018, 49: 94-99

[2]

Zhang JY, Hess WR, Zhang CC. “Life is short, and art is long”: RNA degradation in cyanobacteria and model bacteria. MLife, 2022, 1: 21-39

[3]

Liu SJ, Lin GM, Yuan YQ, Chen W, Zhang JY, Zhang CC. A conserved protein inhibitor brings under check the activity of RNase E in cyanobacteria. Nucleic Acids Res, 2024, 52: 404-419

[4]

Cameron JC, Gordon GC, Pfleger BF. Genetic and genomic analysis of RNases in model cyanobacteria. Photosynthesis Res, 2015, 126(1): 171-183

[5]

Hoffmann UA, Lichtenberg E, Rogh SN, Bilger R, Reimann V, Heyl F, Backofen R, Steglich C, Hess WR, Wilde A. The role of the 5’ sensing function of Ribonuclease E. in cyanobacteria. RNA Biol, 2024, 21: 1-18

[6]

Lejars M, Kobayashi A, Hajnsdorf E. RNase III, ribosome biogenesis and beyond. Microorganisms, 2021

[7]

MacRae IJ, Doudna JA. Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol, 2007, 17: 138-145

[8]

Kim KS, Manasherob R, Cohen SN. YmdB: a stress-responsive ribonuclease-binding regulator of E. coli RNase III activity. Genes Dev, 2008, 22: 3497-3508

[9]

Lejars M, Hajnsdorf E. RNase III participates in the adaptation to temperature shock and oxidative stress in Escherichia coli. Microorganisms, 2022

[10]

Blaszczyk J, Gan J, Tropea JE, Waugh DS, Ji X. Noncatalytic assembly of ribonuclease III with double-stranded RNA. Structure, 2004, 12(3): 457-466

[11]

Gao Y, Gong Y, Xu X. RNase III-dependent down-regulation of ftsH by an artificial internal sense RNA in Anabaena sp. PCC 7120. FEMS Microbiol Lett, 2013, 344(2): 130-137

[12]

M.E. Harris, RNA–Protein Interactions, in: J.K. Blackburn, G. M. Egli, M. Gait, M. J. Watts (Ed.), Nucleic Acids Chem. Biol., 4th ed., The Royal Society of Chemistry, 2022: pp. 572–626.

[13]

Meng W, Nicholson AW. Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro. Biochem J, 2008, 410: 39-48

[14]

Bechhofer DH, Deutscher MP. Bacterial ribonucleases and their roles in RNA metabolism. Crit Rev Biochem Mol Biol, 2019, 54: 242-300

[15]

Hotto AM, Castandet B, Gilet L, Higdon A, Condon C, Stern DB. Arabidopsis chloroplast mini-ribonuclease III participates in rRNA maturation and intron recycling. Plant Cell, 2015, 27: 724-740

[16]

Głow D, Pianka D, Sulej AA, Kozłowski ŁP, Czarnecka J, Chojnowski G, Skowronek KJ, Bujnicki JM. Sequence-specific cleavage of dsRNA by Mini-III RNase. Nucleic Acids Res, 2015, 43(5): 2864-2873

[17]

Nicholson AW. Ribonuclease III mechanisms of double-stranded RNA cleavage. WIREs RNA, 2014, 5: 31-48

[18]

Gasteiger E, Hoogland C, Gattiker A, Duvaud SE, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. InThe proteomics protocols handbook 2005 Mar 22 (pp. 571-607). Totowa, NJ: Humana press.https://doi.org/10.1385/1-59259-890-0:571.

[19]

Tiwari K, Gangopadhyay A, Singh G, Singh VK, Singh SK. Ab initio modelling of an essential mammalian protein: Transcription termination factor 1 (TTF1). J Biomol Struct Dyn, 2023, 41: 6581-6590

[20]

Mészáros B, Erdös G, Dosztányi Z. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res, 2018, 46: W329-W337

[21]

Erdős G, Dosztányi Z. Analyzing protein disorder with IUPred2A. Curr Protoc Bioinformatics, 2020

[22]

Bienert S, Waterhouse A, De Beer TA, Tauriello G, Studer G, Bordoli L, Schwede T. The SWISS-MODEL repository—new features and functionality. Nucl Acids Res., 2017, 45(D1): D313-D319

[23]

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, De Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 2018, 46: W296-W303

[24]

Benkert P, Schwede T, Tosatto SCE. QMEANclust: estimation of protein model quality by combining a composite scoring function with structural density information. BMC Struct Biol, 2009

[25]

Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T. QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics, 2020, 36: 1765-1771

[26]

Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res, 2005, 33: 2302-2309

[27]

Roy A, Yang J, Zhang Y. COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res, 2012

[28]

Yang J, Roy A, Zhang Y. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics, 2013, 29: 2588-2595

[29]

Zhang C, Freddolino PL, Zhang Y. COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Res, 2017, 45: W291-W299

[30]

Jain S, Bader GD. An improved method for scoring protein-protein interactions using semantic similarity within the gene ontology. BMC Bioinformatics, 2010

[31]

Aleksander SA, Balhoff J, Carbon S, et al (2023) The gene ontology knowledgebase in 2023. crick.figshare.com 224:. https://doi.org/10.1093/genetics/iyad031

[32]

Binns D, Dimmer E, Huntley R, Barrell D, Odonovan C, Apweiler R. QuickGO: a web-based tool for gene ontology searching. Bioinformatics, 2009, 25(22): 3045-3046

[33]

Agnihotry S, Pathak RK, Srivastav A, Shukla PK, Gautam B. Molecular docking and structure-based drug design. Comput. Drug Des., 2020

[34]

Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, Ugwuja EI, Aja PM. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep, 2023, 13: 13398

[35]

Huang SY, Zou X. A knowledge-based scoring function for protein-RNA interactions derived from a statistical mechanics-based iterative method. Nucleic Acids Res, 2014

[36]

Huang SY, Zou X. An iterative knowledge-based scoring function for protein-protein recognition. Proteins, 2008, 72: 557-579

[37]

Yan Y, Tao H, He J, Huang SY. The HDOCK server for integrated protein–protein docking. Nat Protoc, 2020, 15: 1829-1852

[38]

Yan Y, Zhang D, Zhou P, Li B, Huang SY. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res, 2017, 45: W365-W373

[39]

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem, 2004, 25: 1605-1612

[40]

Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E. Gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput, 2021, 17: 6281-6291

[41]

Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys, 1995, 103(19): 8577-8593

[42]

Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable AL, Fang T, Doncheva NT, Pyysalo S, Bork P, Jensen LJ, Von Mering C. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res, 2023, 51 D638–D646

[43]

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498-2504

[44]

Watts D, Strogatz S. Collective dynamics of. Nature, 1998, 393: 440-442

[45]

Nafis S, Kalaiarasan P, Singh RKB, Husain M, Bamezai RNK. Apoptosis regulatory protein-protein interaction demonstrates hierarchical scale-free fractal network. Brief Bioinform, 2014, 16: 675-699

[46]

Gupta V, Haider S, Sood U, Gilbert JA, Ramjee M, Forbes K, Singh Y, Lopes BS, Lal R Comparative genomic analysis of novel Acinetobacter symbionts: A combined systems biology and genomics approach. Sci Rep 2016;6. https://doi.org/10.1038/srep29043.

[47]

Sengupta U, Ukil S, Dimitrova N, Agrawal S. Expression-based network biology identifies alteration in key regulatory pathways of type 2 diabetes and associated risk/complications. PLoS ONE, 2009, 4 8100

[48]

Rost B. Twilight zone of protein sequence alignments. Protein Eng, 1999, 12: 85-94

[49]

Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 2011, 27: 343-350

[50]

Morar M, Anand R, Hoskins AA, Stubbe JA, Ealick SE. Complexed structures of formylglycinamide ribonucleotide amidotransferase from Thermotoga maritima describe a novel ATP binding protein superfamily. Biochemistry, 2006, 45: 14880-14895

[51]

Zorz JK, Sharp C, Kleiner M, Gordon PMK, Pon RT, Dong X, Strous M. A shared core microbiome in soda lakes separated by large distances. Nat Commun, 2019

[52]

Herskovitz MA, Bechhofer DH. Endoribonuclease RNase III is essential in Bacillus subtilis. Mol Microbiol, 2000, 38: 1027-1033

[53]

Müller P, Jahn N, Ring C, Maiwald C, Neubert R, Meißner C, Brantl S. A multistress responsive type I toxin-antitoxin system: BsrE/SR5 from the B. subtilis chromosome. RNA Biol, 2016, 13: 511-523

[54]

Heiland I, Wittmann-Liebold B. Amino acid sequence of the ribosomal protein L21 of Escherichia coli. Biochemistry, 1979, 18: 4605-4612

[55]

Jeonc JH, Kjtakawa M, Isono S, Isono K. Cloning and nucleotide sequencing of the genes, rpIU and rpma, for ribosomal proteins l21 and l27 of. DNA Seq, 1993, 4: 59-67

[56]

Kumari R, Singh P, Schumann P, Lal R. Tessaracoccus flavus sp. nov., isolated from the drainage system of a lindane-producing factory. Int J Syst Evol Microbiol, 2016, 66: 1862-1868

[57]

Morinaka BI, Lakis E, Verest M, Helf MJ, Scalvenzi T, Vagstad AL, Sims J, Sunagawa S, Gugger M, Piel J. Natural noncanonical protein splicing yields products with diverse b-amino acid residues. Science, 2018, 359: 779-782

[58]

Kaneko T, Tanaka A, Sato S, Kotani H, Sazuka T, Miyajima N, Sugiura M, Tabata S. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64% to 92% of the genome. DNA Res, 1995, 2: 153-166

[59]

Brauer D, Wittmann-Liebold B. The primary structure of the initiation factor IF-3 from Escherichia coli. FEBS Lett, 1977, 79: 269-275

[60]

Marter P, Freese HM, Ringel V, Brinkmann H, Pradella S, Rohde M, Jarek M, Spröer C, Wagner-Döbler I, Overmann J, Bunk B, Petersen J. Superior resolution profiling of the Coleofasciculus microbiome by amplicon sequencing of the complete 16S rRNA gene and ITS region. Environ Microbiol Rep, 2025, 17: 70066

[61]

Beebe K, Merriman E, De Pouplana LR, Schimmel P. A domain for editing by an archaebacterial tRNA synthetase. Proc Natl Acad Sci USA, 2004, 101: 5958-5963

[62]

Minajigi A, Francklyn CS. RNA-assisted catalysis in a protein enzyme: the 2′-hydroxyl of tRNAThr A76 promotes aminoacylation by threonyl-tRNA synthetase. Proc Natl Acad Sci USA, 2008, 105: 17748-17753

[63]

Sankaranarayanan R, Dock-Bregeon AC, Rees B, Bovee M, Caillet J, Romby P, Francklyn CS, Moras D. Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase. Nat Struct Biol, 2000, 7: 461-465

[64]

Springer M, Graffe M, Butler JS, Grunberg-Manago M. Genetic definition of the translational operator of the threonine-tRNA ligase gene in Escherichia coli. Proc Natl Acad Sci USA, 1986, 83: 4384-4388

[65]

Stead MB, Marshburn S, Mohanty BK, Mitra J, Castillo LP, Ray D, Van Bakel H, Hughes TR, Kushner SR. Analysis of Escherichia coli RNase e and RNase III activity in vivo using tiling microarrays. Nucleic Acids Res, 2011, 39: 3188-3203

[66]

Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P, Siksnys V. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol, 2013, 10: 841-851

[67]

Gordon GC, Cameron JC, Pfleger BF. Distinct and redundant functions of three homologs of RNase III in the cyanobacterium Synechococcus sp. strain PCC 7002. Nucleic Acids Res, 2018, 46: 1984-1997

[68]

Redko Y, Bechhofer DH, Condon C. Mini-III, an unusual member of the RNase III family of enzymes, catalyses 23S ribosomal RNA maturation in Bacillus subtilis. Mol Microbiol, 2008, 68: 1096-1106

[69]

Durand S, Gilet L, Bessières P, Nicolas P, Condon C. Three essential ribonucleases—RNase Y, J1, and III—control the abundance of a majority of Bacillus subtilis mRNAs. PLoS Genet, 2012, 8 e1002520

[70]

Lejars M, Hajnsdorf E. RNase III participates in the adaptation to temperature shock and oxidative stress in Escherichia coli. Microorganisms, 2022, 10: 699

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/