Enhancing riboflavin yield by elucidating the regulatory role of transcription factor YgzD in Bacillus subtilis

Jiajia You , Kang Wang , Xiaoling Zhang , Yuxuan Du , Minglong Shao , Yanan Li , Taowei Yang , Xuewei Pan , Xian Zhang , Zhiming Rao

Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) : 28

PDF
Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) :28 DOI: 10.1007/s43393-025-00423-7
Original Article
research-article

Enhancing riboflavin yield by elucidating the regulatory role of transcription factor YgzD in Bacillus subtilis

Author information +
History +
PDF

Keywords

Transcription factor / Bacillus subtilis / Riboflavin / Purine metabolism / Metabolic engineering

Cite this article

Download citation ▾
Jiajia You, Kang Wang, Xiaoling Zhang, Yuxuan Du, Minglong Shao, Yanan Li, Taowei Yang, Xuewei Pan, Xian Zhang, Zhiming Rao. Enhancing riboflavin yield by elucidating the regulatory role of transcription factor YgzD in Bacillus subtilis. Systems Microbiology and Biomanufacturing, 2026, 6(1): 28 DOI:10.1007/s43393-025-00423-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Corrêa GG, Lins MR, Silva BF, de Paiva GB, Zocca VF, Ribeiro NV, Picheli FP, Mack M, Pedrolli DB. A modular autoinduction device for control of gene expression in Bacillus subtilis. Metab Eng, 2020, 61: 326-34

[2]

Wang G, Shi T, Chen T, Wang X, Wang Y, Liu D, Guo J, Fu J, Feng L, Wang Z, Zhao X. Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis. Metab Eng, 2018, 48: 138-149

[3]

Zhao J, Wang G, Chu J, Zhuang Y. Harnessing microbial metabolomics for industrial applications. World J Microbiol Biotechnol, 2019, 36(1 1

[4]

Kim M, Park BG, Kim J, Kim JY, Kim BG. Exploiting transcriptomic data for metabolic engineering: toward a systematic strain design. Curr Opin Biotechnol, 2018, 54: 26-32

[5]

Nielsen J, Keasling JD. Engineering cellular metabolism. Cell, 2016, 164(6): 1185-1197

[6]

Shi S, Chen T, Zhang Z, Chen X, Zhao X. Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production. Metab Eng, 2009, 11(4-5): 243-252

[7]

Sinha SC, Krahn J, Shin BS, Tomchick DR, Zalkin H, Smith JL. The purine repressor of Bacillus subtilis: a novel combination of domains adapted for transcription regulation. J Bacteriol, 2003, 185(14): 4087-4098

[8]

Shi T, Wang Y, Wang Z, Wang G, Liu D, Fu J, Chen T, Zhao X. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis. Microb Cell Fact, 2014, 13: 101

[9]

Shi S, Shen Z, Chen X, Chen T, Zhao X. Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis. Biochem Eng J, 2009, 46(1): 28-33

[10]

Duan YX, Chen T, Chen X, Zhao XM. Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis. Appl Microbiol Biotechnol, 2010, 85(61907-14

[11]

Wang Z, Chen T, Ma X, Shen Z, Zhao X. Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum. Bioresour Technol, 2011, 102(4): 3934-3940

[12]

You J, Wang Y, Wang K, Du Y, Zhang X, Zhang X, Yang T, Pan X, Rao Z. Utilizing 5' UTR engineering enables fine-tuning of multiple genes within operons to balance metabolic flux in Bacillus subtilis. Biology, 2024

[13]

Boumezbeur AH, Bruer M, Stoecklin G, Mack M. Rational engineering of transcriptional riboswitches leads to enhanced metabolite levels in Bacillus subtilis. Metab Eng, 2020, 61: 58-68

[14]

Lins M, Amorim L, Corrêa GG, Picão BW, Mack M, Cerri MO, Pedrolli DB. Targeting riboswitches with synthetic small RNAs for metabolic engineering. Metab Eng, 2021, 68: 59-67

[15]

Man ZW, Rao ZM, Cheng YP, Yang TW, Zhang X, Xu MJ, Xu ZH. Enhanced riboflavin production by recombinant Bacillus subtilis RF1 through the optimization of agitation speed. World J Microbiol Biotechnol, 2014, 30(2): 661-667

[16]

Hu J, Lei P, Mohsin A, Liu X, Huang M, Li L, Hu J, Hang H, Zhuang Y, Guo M. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production. Microb Cell Fact, 2017, 16(1): 150

[17]

You J, Yang C, Pan X, Hu M, Du Y, Osire T, Yang T, Rao Z. Metabolic engineering of Bacillus subtilis for enhancing riboflavin production by alleviating dissolved oxygen limitation. Bioresour Technol, 2021, 333 125228

[18]

Ma W, Liu Y, Shin HD, Li J, Chen J, Du G, Liu L. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production. Bioresour Technol, 2018, 250: 642-649

[19]

Chen X, He Y, Ye H, Xie Y, Sen B, Jiao N, Wang G. Different carbon and nitrogen sources regulated docosahexaenoic acid (DHA) production of Thraustochytriidae sp. PKU#SW8 through a fully functional polyunsaturated fatty acid (PUFA) synthase gene (pfaB). Bioresour Technol, 2020, 318 124273

[20]

You J, Du Y, Pan X, Zhang X, Yang T, Rao Z. Increased production of riboflavin by coordinated expression of multiple genes in operons in Bacillus subtilis. ACS Synth Biol, 2022, 11(51801-1810

[21]

You J, Sun L, Yang X, Pan X, Huang Z, Zhang X, Gong M, Fan Z, Li L, Cui X, Jing Z, Jin S, Rao Z, Wu W, Yang H. Regulatory protein SrpA controls phage infection and core cellular processes in Pseudomonas aeruginosa. Nat Commun, 2018, 9(1): 1846

[22]

Pan X, Tang M, You J, Osire T, Sun C, Fu W, Yi G, Yang T, Yang ST, Rao Z. PsrA is a novel regulator contributes to antibiotic synthesis, bacterial virulence, cell motility and extracellular polysaccharides production in Serratia marcescens. Nucleic Acids Res, 2022, 50(1127-148

[23]

Hümbelin M, Griesser V, Keller T, Schurter W, Haiker M, Hohmann HP, Ritz H, Richter G, Bacher A, van Loon APGM. GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production. J Ind Microbiol Biotechnol, 1999, 22(1): 1-7

[24]

Geng H, Zuber P, Nakano MM. Regulation of respiratory genes by ResD-ResE signal transduction system in Bacillus subtilis. Methods Enzymol, 2007, 422: 448-464

[25]

Zhang X, Li Y, Wang K, Yin J, Du Y, Yang Z, Pan X, You J, Rao Z. Construction of antibiotic-free riboflavin producer in Escherichia coli by metabolic engineering strategies with a plasmid stabilization system. Synth Syst Biotechnol, 2025, 10(2): 346-355

[26]

Nishimura T, Vertès AA, Shinoda Y, Inui M, Yukawa H. Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol, 2007, 75(4): 889-897

[27]

Vetter SM, Schlievert PM. The two-component system Bacillus respiratory response A and B (BrrA-BrrB) is a virulence factor regulator in Bacillus anthracis. Biochemistry, 2007, 46(25): 7343-7352

[28]

Zhang G, Zhang C, Wang Z, Wang Q, Nielsen J, Dai Z. Dual β-oxidation pathway and transcription factor engineering for methyl ketones production in Saccharomyces cerevisiae. Metab Eng, 2022, 73: 225-234

[29]

Liu L, Ding D, Wang H, Ren X, Lee SY, Zhang D. Balancing cell growth and product synthesis for efficient microbial cell factories. Adv Sci, 2025, 12(40 e10649

[30]

Jeschek M, Gerngross D, Panke S. Combinatorial pathway optimization for streamlined metabolic engineering. Curr Opin Biotechnol, 2017, 47: 142-151

Funding

Key Technologies Research and Development Program(2024YFA0917900)

Basic Research Program of Jiangsu Province(BK20221080)

National Natural Science Foundation of China(32300063 and 32471530)

Jiangsu Program for Frontier Technology R&D(BF2024012)

the Fundamental Research Funds for the Central Universities(NO. JUSRP202501034)

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

9

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/