Crystalline material-microbe composite catalyst for CO2 bioconversion

Junjie Tan , Yan Zhang , Xin Liu , Yao Chen

Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) : 19

PDF
Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) :19 DOI: 10.1007/s43393-025-00411-x
Review
review-article

Crystalline material-microbe composite catalyst for CO2 bioconversion

Author information +
History +
PDF

Abstract

Achieving carbon neutrality has emerged as a critical global goal to address climate change. As the most significant greenhouse gas, CO2 poses environmental challenges while representing a potential carbon resource. Biotransformation technologies offer sustainable, low-energy-consumption solutions for CO2 utilization; however, their development is restricted by low gas solubility and microbial efficiency limitations. Crystalline materials have recently demonstrated great potential to enhance CO2 capture, boost electron transfer, and promote microbial immobilization. These materials can function as supports, catalysts, or functional media in microbial systems to improve transformation efficiency. This review summarizes recent advances in CO2-biotransformation crystalline material-microbe hybrid systems, with an in-depth analysis of material functions, key microbes, and carbon fixation mechanisms, and looks forward to the future development trend of crystalline material-microbe hybrid systems for CO2 bioconversion. This study provides critical insights for the development of highly efficient and industrially scalable CO2 biotransformation platforms.

Keywords

CO2 bioconversion / Crystalline materials / Microbe-material interface / Electron transfer / Photocatalytic microbial systems / Carbon neutrality

Cite this article

Download citation ▾
Junjie Tan, Yan Zhang, Xin Liu, Yao Chen. Crystalline material-microbe composite catalyst for CO2 bioconversion. Systems Microbiology and Biomanufacturing, 2026, 6(1): 19 DOI:10.1007/s43393-025-00411-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu K, Bigdeli F, Panjehpour A, et al.. Metal organic framework composites for reduction of CO2. Coord Chem Rev, 2023, 493 215257

[2]

Li D, Kassymova M, Cai X, et al.. Photocatalytic CO2 reduction over metal-organic framework-based materials. Coord Chem Rev, 2020, 412 213262

[3]

Shi S, Wang Y, Qiao W, et al.. Challenges and opportunities in the third-generation biorefinery. Chin Sci Bull, 2023, 68(19): 2489-2503

[4]

Wang K, Su C, Bi H, et al.. The transition from 2g to 3g-feedstocks enabled efficient production of fuels and chemicals. Green Energy Environ, 2024, 9(11): 1759-1770

[5]

Lv X, Yu W, Zhang C, et al.. C1-based biomanufacturing: advances, challenges and perspectives. Bioresour Technol, 2023, 367 128259

[6]

Burkart M, Hazari N, Tway C, et al.. Opportunities and challenges for catalysis in carbon dioxide utilization. ACS Catal, 2019, 9(9): 7937-7956

[7]

Qiao Y, Ma W, Zhang S, Guo F, Liu K, Jiang Y, Wang Y, Xin F, Zhang W, Jiang M. Artificial multi-enzyme cascades and whole-cell transformation for bioconversion of C1 compounds: advances, challenge and perspectives. Synth Syst Biotechnol, 2023, 8(4): 578-583

[8]

Jiezheng L, Min L, Guang Z, et al.. Progress in artificial microbiol transformation of one-carbon compounds. Acta Laser Biol Sin, 2024, 33(5): 385-399

[9]

Soudagar M, Marghade D, Shelare S, Soudagar MEM, Karunanidhi D, Prakash C, Khan TMY, Cao W. Metal-organic framework nanocomposites: engineering and morphological advances for photocatalytic CO2 conversion into fuel. Appl Energy, 2025, 379 124977

[10]

Chen L, Luque R, Li Y. Controllable design of tunable nanostructures inside metal–organic frameworks. Chem Soc Rev, 2017, 46(15): 4614-4630

[11]

Lesnyak V, Gaponik N, Eychmüller A. Colloidal semiconductor nanocrystals: the aqueous approach. Chem Soc Rev, 2013, 42: 2905-2929

[12]

Niu Z. Preface to the special topic on quantum dots. Natl Sci Rev, 2017, 4(2): 167

[13]

Quesada-González D, Merkoçi A. Quantum dots for biosensing: classification and applications. Biosens Bioelectron, 2025, 273 117180

[14]

Kirchon A, Feng L, Drake H, et al.. From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem Soc Rev, 2018, 47: 8611-8638

[15]

Terna A, Elemike E, Mbonu J, Terna AD, Elemike EE, Mbonu JI, Osafile OE, Ezeani RO. The future of semiconductors nanoparticles: synthesis, properties and applications. Mater Sci Eng B Solid-State Mater Adv Technol, 2021, 272 115363

[16]

Wareing T, Gentile P, Phan A. Biomass-based carbon dots: current development and future perspectives. ACS Nano, 2021, 15(1015397-16946

[17]

Islam M, Afroj S, Karim N, Islam MH, Uddin MA, Andreeva DV, Novoselov KS. Graphene and cnt-based smart fiber-reinforced composites: a review. Adv Funct Mater, 2022, 32(40 2205723

[18]

Hu L, Wang H, Xu P, et al.. Biomineralization of hypersaline produced water using microbially induced calcite precipitation[J]. Water Res, 2021, 190 116753

[19]

Sakimoto K, Wong A, Yang P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science, 2016, 351(6268): 74-77

[20]

Liu C, Colon B, Ziesack M, Colón BC, Silver PA, Nocera DG. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science, 2016, 352(6290): 1210-1213

[21]

Cheng J, Zhu Y, Xu X, et al.. Enhanced biomass productivity of Arthrospira platensis using zeolitic imidazolate framework-8 as carbon dioxide adsorbents, Bioresour Technol. Bioresour Technol, 2019, 294 122118

[22]

Hu N, Wang L, Liao M, Liu K. Research on electrocatalytic reduction of CO2 by microorganisms with a graphene modified carbon felt. Int J Hydrogen Energy, 2021, 46(9): 6180-6187

[23]

Chen H, Li J, Fan Q, Zheng T, Zhang Y, Yong Y-C, Fang Z. A feasible strategy for microbial electrocatalytic CO2 reduction via whole-cell-packed and exogenous-mediator-free rGO/Shewanella biohydrogel. Chem Eng J, 2023, 460 141863

[24]

Seelajaroen H, Haberbauer M, Hemmelmair C, et al.. Enhanced bio-electrochemical reduction of carbon dioxide by using neutral red as a redox mediator. ChemBioChem, 2019, 20(9): 1196-1205

[25]

Hu G, Li Z, Ma D, et al.. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nat Catal, 2021, 4(5): 395-406

[26]

Le G, Mohamed H, Kim H. Microbial symbiotic electrobioconversion of carbon dioxide to biopolymer (poly (3-hydroxybutyrate)) via single-step microbial electrosynthesis cell. Chem Eng J, 2024, 500 156635

[27]

Choi K, Ahn Y, Lee S. Bacterial conversion of CO2 to organic compounds. J CO2 Util, 2022, 58 101929

[28]

Bertsch J, Oppinger C, Hess V, et al.. Heterotrimeric NADH oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodie. J Bacteriol, 2015, 197(9): 1681-1689

[29]

Radfar R, Leaphart A, Brewer J, et al.. Cation binding and thermostability of FTHFS monovalent cation binding sites and thermostability of N10-formyltetrahydrofolate synthetase from Moorella thermoacetica. Biochemistry, 2000, 39(47): 14481-14486

[30]

Abbanat D, Ferryv J. Synthesis of acetyl coenzyme A by carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila. J Bacteriol, 1990, 172(12): 7145-7150

[31]

Henstra A, Dijkema C, Stams A. Archaeoglobus fulgidus couples CO oxidation to sulfate reduction and acetogenesis with transient formate accumulation. Environ Microbiol, 2007, 9(7): 1836-1841

[32]

Sanchez-Andrea I, Guedes I, Hornung B, et al.. The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nat Commun, 2020, 11(1): 5090

[33]

Song Y, Lee J, Shin J, Lee JS, Lee GM, Jin S, Kang S, Lee J-K, Kim DR, Lee EY, Kim SC, Cho S, Kim D, Cho B-K. Functional cooperation of the glycine synthasereductase and Wood-Ljungdahl pathways for autotrophic growth of Clostridium drakei. Proc Natl Acad Sci USA, 2020, 117(137516-7523

[34]

Hugler M, Wirsen C, Fuchs G, et al.. Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the epsilon subdivision of proteobacteria. J Bacteriol, 2005, 187(9): 3020-3027

[35]

Braakman R, Smith E. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium. PLoS ONE, 2014, 9(2 e87950

[36]

Strauss G, Fuchs G. Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Eur J Biochem, 1993, 215(3): 633-643

[37]

Alber B, Olinger M, Rieder A, et al.. Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp. J Bacteriol, 2006, 188(24): 8551-8559

[38]

Huber H, Gallenberger M, Jahn U, et al.. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis. Proc Natl Acad Sci U S A, 2008, 105(22): 7851-7856

[39]

Schwander T, von Schada Borzyskowski L, Burgener S, et al.. A synthetic pathway for the fixation of carbon dioxide in vitro. Science, 2016, 354(6314): 900-904

[40]

Guan X, Ersan S, Hu X, et al.. Maximizing light-driven CO2 and N2 fixation efficiency in quantum dot-bacteria hybrids. Nat Catal, 2022, 5: 1019-1029

[41]

Feng Y, Xu M, Tremblay P, Tremblay P-L, Zhang T. The one-pot synthesis of a ZnSe/ZnS photocatalyst for H2 evolution and microbial bioproduction. Int J Hydrogen Energy, 2021, 46(42): 21901-21911

[42]

Yang Y, Li M, Hung T. Enhancing CO2 dissolution and inorganic carbon conversion by metal-organic frameworks improves microalgal growth and carbon fixation efficiency [J]. Bioresour Technol, 2024, 407 131113

[43]

Chen S, Hua Y, Dai L, et al.. High proton conductivity of mof-808 promotes methane production in anaerobic digestion. ACS Sustain Chem Eng, 2022, 10(4): 1419-1429

[44]

Dong Z, Ding Y, Chen F, Zhu X, Wang H, Cheng M, Liao Q. Enhanced carbon dioxide biomethanation with hydrogen using anaerobic granular sludge and metal–organic frameworks: microbial community response and energy metabolism analysis. Bioresour Technol, 2022, 362 127822

[45]

Jiang Y, Yang F, Dai M, et al.. Application of microbial immobilization technology for remediation of Cr(VI) contamination: a review. Chemosphere, 2022, 286 2

[46]

Yang Y, Li M, Tao W, Yang Y-W, Li M-J, Tao W-Q, Huang D. Study of carbon dioxide sequestration and electricity generation by a new hybrid bioenergy system with the novelty catalyst [J]. Appl Therm Eng, 2021, 197 117366

[47]

Noori M, Mansi, Sundriyal S, et al.. Copper foam supported-C3N4-metal-organic framework bacteria biohybrid cathode catalystfor-CO2 reduction in microbial electrosynthesis. Sci Rep, 2023, 13: 22741

[48]

Zheng X, Lin R, Xu J, et al.. Enhanced methane production by bimetallic metal-organic frameworks (MOFs) as cathode in an anaerobic digestion microbial electrolysis cell. Chem Eng J, 2022, 15135799

[49]

Song T, Zhang H, Liu H, Song T-S, Zhang D, Wang H, Yang Y, Yuan H, Xie J. High efficiency microbial electrosynthesis of acetate from carbon dioxide by a self-assembled electroactive biofilm. Bioresour Technol, 2017, 243: 573-582

[50]

Kim B, Cho H, Park J, et al.. Strategic advances in formation of cell-in-shell structures: from syntheses to applications. Adv Mater, 2018, 30: 14

[51]

Ji Z, Zhang H, Liu H, et al.. Cytoprotective metal-organic frameworks for anaerobic bacteria. Proc Natl Acad Sci USA, 2018, 115(42): 10582-10587

[52]

Li D, Dong H, Cao X, et al.. Enhancing photosynthetic CO-fixation by assembling metal-organic frameworks on chlorella pyrenoidosa. Nat Commun, 2023, 14: 5337

[53]

Yee M, Deutzmann J, Spormann A, et al.. Cultivating electroactive microbes-from field to bench. Nanotechnology, 2020, 31: 174003

[54]

Cahoon L, Freitag N. The electrifying energy of gut microbes. Nature, 2018, 562: 43-44

[55]

Shi L, Dong H, Reguera G, et al.. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol, 2016, 14: 651-662

[56]

White G, Shi Z, Shi L, et al.. Rapid electron exchange between surfaceexposed bacterial cytochromes and Fe(III) minerals. Proc Natl Acad Sci U S A, 2013, 110: 6346-6351

[57]

White G, Edwards M, Gomez-Perez L, et al.. Mechanisms of bacterial extracellular electron exchange. Adv Microb Physiol, 2016, 68: 87-138

[58]

Walker D, Nevin K, Holmes D, et al.. Syntrophus conductive pili demonstrate that common hydrogen-donating syntrophs can have a direct electron transfer option. ISME J, 2020, 14: 837-846

[59]

Lovley D. Syntrophy goes electric: direct interspecies electron transfer. Annu Rev Microbiol, 2017, 71: 643-664

[60]

Kuo Y, Hsu M, Wang W, et al.. Highly conductive riboflavin-based carbon quantum dot-embedded SiO2@MoS2 nanocomposite for enhancing bioelectricity generation through synergistic direct and indirect electron transport. Nano Energy, 2024, 121: 109251

[61]

Gurumurthy D, Bharagava R, Kumar A, et al.. EPS bound flavins driven mediated electron transfer in thermophilic Geobacillus sp.. Microbiol Res, 2019, 229: 126324

[62]

Liu X, Shi L, Gu J. Microbial electrocatalysis: redox mediators responsible for extracellular electron transfer. Biotechnol Adv, 2018, 36: 1815-1827

[63]

Bosire E, Rosenbaum M. Electrochemical potential influences phenazine production, electron transfer and consequently electric current generation by pseudomonas aeruginosa. Front Microbiol, 2017, 8: 892

[64]

Li T, Zhang K, Song T, et al.. α-Fe2O3/g-C3N4 Z-scheme heterojunction photocathode to enhance microbial electrosynthesis of acetate from CO2. ACS Sustain Chem Eng, 2022, 10(5117308-17317

[65]

Guo J, Suastegui M, Sakimoto K, et al.. Light-driven fine chemical production in yeast biohybrids. Science, 2018, 362(6416813-816

[66]

Jin S, Jeon Y, Jeon M, et al.. Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth. Proc Natl Acad Sci USA, 2021, 118(9): e2020552118

[67]

Ding Y, Bertram J, Eckert C, et al.. Nanorg microbial factories: light-driven renewable biochemical synthesis using quantum dot-bacteria nanobiohybrids. J Am Chem Soc, 2019, 141(2610272-10282

[68]

Wang B, Jiang Z, Jimmy C, et al.. Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system. Nanoscale, 2019, 11(19): 9296-9301

[69]

Ye J, Yu J, Zhang Y, Chen M, Liu X, Zhou S, He Z. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid. Appl Catal B Environ, 2019, 257 117916

[70]

Aryal N, Halder A, Tremblay P, Tremblay P-L, Chi Q, Zhang T. Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis. Electrochim Acta, 2016, 217: 117-122

[71]

Bajracharya S, Krige A, Matsakas L, Rova U, Christakopoulos P. Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata. Chemosphere, 2022, 287(3 132188

[72]

Nichols E, Gallagher J, Liu C, et al.. Hybrid bioinorganic approach to solar-to-chemical conversion. Proc Natl Acad Sci U S A, 2015, 112(37): 11461-11466

Funding

the National Key Research and Development Program of China (2020YFA0907300)

the Hundred-Talent Program of the Chinese Academy of Sciences (2024ZZ-03)

Haihe Laboratory of Synthetic Biology (22HHSWSS00008)

General Program of the National Natural Science Foundation of China (22371136)

the Independent Research Project of the National Key Laboratory of Biopharmaceutical Preparation and Delivery (552024000621)

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

8

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/