Combinatorial metabolic engineering and whole-cell biocatalysis enable high-level lacto-N-neotetraose production in Corynebacterium glutamicum

Zihan Li , Dezhi Zhang , Yaqun Tang , Guihong Zhao , Geer Liu , Xiaoyuan Wang

Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) : 5

PDF
Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) :5 DOI: 10.1007/s43393-025-00407-7
Original Article
research-article

Combinatorial metabolic engineering and whole-cell biocatalysis enable high-level lacto-N-neotetraose production in Corynebacterium glutamicum

Author information +
History +
PDF

Abstract

Lacto-N-neotetraose (LNnT), a functional oligosaccharide abundant in human milk, holds significant nutritional and biomedical value. This study engineered the industrial workhorse Corynebacterium glutamicum ATCC13032, which lacks native LNnT biosynthesis capability, through systematic metabolic engineering. Initial strain CL001 was constructed by heterologously expressing LgtA and LgtB from Neisseria meningitidis and LacY from Escherichia coli, achieving 0.084 g/L LNnT. Subsequent introduction of E. coli galactokinase GalK (strain CL002) enhanced production to 0.286 g/L. Metabolic flux optimization through zwf gene knockout to suppress the pentose phosphate pathway (strain CL013) further increased titers to 0.477 g/L. Implementation of an ABC transporter system (strain CL014) elevated LNnT production to 1.05 g/L. Whole-cell catalysis of CL014 for LNnT production was optimized after 54 h cultivation at 37 °C. Substrate optimization established ideal concentrations at 60 mM lactose, 60 mM galactose, and 240 mM glucose. Under these conditions, CL014 achieved 9.12 g/L LNnT production, representing a 108-fold improvement over the initial engineered strain. This work demonstrates the potential of engineered C. glutamicum as an efficient platform for human milk oligosaccharide biosynthesis.

Keywords

Corynebacterium glutamicum / Human milk oligosaccharide / LNnT / zwf / ABC transporter

Cite this article

Download citation ▾
Zihan Li, Dezhi Zhang, Yaqun Tang, Guihong Zhao, Geer Liu, Xiaoyuan Wang. Combinatorial metabolic engineering and whole-cell biocatalysis enable high-level lacto-N-neotetraose production in Corynebacterium glutamicum. Systems Microbiology and Biomanufacturing, 2026, 6(1): 5 DOI:10.1007/s43393-025-00407-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology, 2012, 22(9): 1147

[2]

Zhu Y, Luo G, Wan L, et al.. Physiological effects, biosynthesis, and derivatization of key human milk tetrasaccharides, lacto-N-tetraose, and lacto-N-neotetraose. Crit Rev Biotechnol, 2022, 424: 578-596

[3]

Marriage BJ, Buck RH, Goehring KC, et al.. Infants fed a lower calorie formula with 2'-FL show growth and 2'-FL uptake like breast-fed infants. J Pediatr Gastroenterol Nutr, 2015, 61(6649

[4]

Puccio G, Alliet P, Cajozzo C, et al.. Effects of infant formula with human milk oligosaccharides on growth and morbidity: a randomized multicenter trial. J Pediatr Gastroenterol Nutr, 2017, 64(4624

[5]

Pérez-Escalante E, Alatorre-Santamaría S, Castañeda-Ovando A, et al.. Human milk oligosaccharides as bioactive compounds in infant formula: recent advances and trends in synthetic methods. Crit Rev Food Sci Nutr, 2022, 62(1181-214

[6]

Terrazas LI, Walsh KL, Piskorska D, et al.. The schistosome oligosaccharide lacto-N-neotetraose expands Gr1(+) cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4(+) cells: A potential mechanism for immune polarization in helminth infections. J Immunol, 2001, 167(9): 5294

[7]

Thomas PG, Carter MR, Atochina O, et al.. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a toll-like receptor 4-dependent mechanism. J Immunol, 2003, 171(115837

[8]

Idänpään-Heikkilä I, Simon PM, Zopf D, et al.. Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. J Infect Dis, 1997, 1763: 704-712

[9]

Duska-Mcewen G, Senft A, Ruetschilling T, et al. Human milk oligosaccharides enhance innate immunity to respiratory syncytial virus and influenza in vitro. Food Sci Nutr. 2014; 51387–98.

[10]

Moore RE, Xu LL, Townsend SD. Prospecting human milk oligosaccharides as a defense against viral infections. ACS Infect Dis, 2021, 7(2254

[11]

Kuntz S, Kunz C, Rudloff S. Oligosaccharides from human milk induce growth arrest via G2/M by influencing growth-related cell cycle genes in intestinal epithelial cells. Br J Nutr, 2009, 101(91306-1315

[12]

Kuntz S, Rudloff S, Kunz C. Oligosaccharides from human milk influence growth-related characteristics of intestinally transformed and non-transformed intestinal cells. Br J Nutr, 2008, 99(3): 462-471

[13]

Holscher HD, Davis SR, Tappenden KA. Human milk oligosaccharides influence maturation of human intestinal Caco-2Bbe and HT-29 cell lines. J Nutr, 2014, 144(5): 586-591

[14]

Han NS, Kim T-J, Park Y-C, et al.. Biotechnological production of human milk oligosaccharides. Biotechnol Adv, 2012, 306: 1268-1278

[15]

Sprenger GA, Baumgärtner F, Albermann C. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations. J Biotechnol, 2017, 258: 79-91

[16]

Liao Y, Lao C, Wu J, et al.. High-yield synthesis of lacto-N-neotetraose from glycerol and glucose in engineered Escherichia coli. J Agric Food Chem, 2024, 7210: 5325-5338

[17]

Dong X, Li N, Liu Z, et al.. CRISPRi-guided multiplexed fine-tuning of metabolic flux for enhanced lacto-N-neotetraose production in Bacillus subtilis. J Agric Food Chem, 2020, 68(8): 2477-2484

[18]

Yang J, Mund NK, Yang L, et al.. Engineering glycolytic pathway for improved Lacto-N-neotetraose production in pichia pastoris. Enzyme Microb Technol, 2025, 184: 110576

[19]

Liu H, Zeng Q, Zhu C, et al.. High-throughput screening and directed evolution of β-1,3-N-Acetylglucosaminyltransferase for wnhanced LNnT production in engineered Saccharomyces cerevisiae. J Agric Food Chem, 2025, 7313: 7966-7974

[20]

Corp APT. Method for producing lacto-N-tetraose and lacto-N-neotetraose using Corynebacterium glutamicum. 2023; WO: 2023219437.

[21]

Ohnishi J, Ikeda M. Comparisons of potentials for L-lysine production among different Corynebacterium glutamicum strains. Biosci Biotechnol Biochem, 2006, 70(4): 1017-1020

[22]

Becker J, Rohles CM, Wittmann C. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng, 2018, 50: 122-141

[23]

Sano C. History of glutamate production12. Am J Clin Nutr, 2009, 90(3): 728S-S732

[24]

Cleto S, Jensen JV, Wendisch VF, et al.. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol, 2016, 5(5): 375-385

[25]

Blixt O, Van Die I, Norberg T, et al.. High-level expression of the Neisseria meningitidis lgtA gene in Escherichia coli and characterization of the encoded N-acetylglucosaminyltransferase as a useful catalyst in the synthesis of GlcNAc beta 1- ->3Gal and GalNAc beta 1- ->3Gal linkages. Glycobiology, 1999, 9(10): 1061-1071

[26]

Chen C, Zhang Y, Xue M, et al.. Sequential one-pot multienzyme (OPME) synthesis of lacto-N-neotetraose and its sialyl and fucosyl derivatives. Chem Commun (Camb), 2015, 51(36): 7689-7692

[27]

Matsuki T, Yahagi K, Mori H, et al.. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun, 2016, 7(1): 11939

[28]

Wang T, Li YJ, Li J, et al.. An update of the suicide plasmid-mediated genome editing system in Corynebacterium glutamicum. Microb Biotechnol, 2019, 12(5907-919

[29]

Li Z, Zhao G, Zhang D, Tang Y, Liu G, Wang X. Metabolic engineering Corynebacterium glutamicum ATCC13032 for 2′-fucosyllactose production. Syst Microbiol Biomanuf, 2025, 5(3): 1084-1099

[30]

Zhao G, Zhang D, Zhou B, et al.. Fine-regulating the carbon flux of l-Isoleucine producing Corynebacterium glutamicum WM001 for efficient L-threonine production. ACS Synth Biol, 2024, 13(10): 3446-3460

[31]

Li H. Extraction, purification, characterization and antioxidant activities of polysaccharides from Ramaria botrytis (Pers.) Ricken. Chem Cent J, 2017, 11: 24

[32]

Kirchner O, Tauch A. Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol, 2003, 1041: 287-99

Funding

Government of Jiangsu Province(No. BK20233003)

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

9

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/