Bacillus species: potential methanol bioconversion platform

Jiawei Lu , Fengxu Xiao , Yupeng Zhang , Zhikai Liu , Youran Li , Guiyang Shi , Hao Zhang

Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) : 11

PDF
Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) :11 DOI: 10.1007/s43393-025-00406-8
Review
review-article

Bacillus species: potential methanol bioconversion platform

Author information +
History +
PDF

Abstract

Methanol has emerged as promising single-carbon and sustainable feedstocks with no association with food production. Methanol bioconversion by methylotrophic fermentations has been practiced for decades, but their applications are still limited to natural methylotrophs due to the lack of synthetic biology tools and suitable classis. Bacillus species generally has good resistance and safety, and are potential chassis in industry. Moreover, some Bacillus species are natural methylotrophs, which means that Bacillus species employed as methanol bioconversion classis may be feasible. This review systematically analyzes methanol metabolic pathways in natural methylotrophs, focusing on three critical biochemical processes: methanol oxidation, formaldehyde assimilation, and dissimilation pathways. Additionally, the article provides a comprehensive discussion of applications existing challenges in methylotrophic Bacillus engineering, including those related to methanol oxidation, formaldehyde toxicity, cofactor balance, and fermentation equipment, while proposing potential strategies to address these technical bottlenecks in the construction of Bacillus methanol classis. This review seeks to demonstrate the potential of the Bacillus species in next-generation methanol-based applications and provide a practical reference for researchers selecting methylotrophic strains.

Keywords

Methanol metabolism / Methanol bioconversion / Bacillus species / Methylotroph / Classis

Cite this article

Download citation ▾
Jiawei Lu, Fengxu Xiao, Yupeng Zhang, Zhikai Liu, Youran Li, Guiyang Shi, Hao Zhang. Bacillus species: potential methanol bioconversion platform. Systems Microbiology and Biomanufacturing, 2026, 6(1): 11 DOI:10.1007/s43393-025-00406-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cotton CAR, Claassens NJ, Benito-Vaquerizo S, Bar-Even A. Renewable methanol and formate as microbial feedstocks. Curr Opin Biotechnol, 2020, 62: 168-180

[2]

Cai P, Wu X, Xie L, Shen Y, Gao L, Zhou Y. Advances in microbial bioconversion of methanol. Sci Sin Chim, 2024, 54(11): 2199-2218

[3]

Feng L, Gu Y, Dong M, Liu J, Jiang L, Wu Y. CO2 utilization for methanol production: a review on the safety concerns and countermeasures. Environ Sci Pollut Res, 2024, 31(16): 23393-23407

[4]

Cai P, Wu X, Xie L, Shen Y, Gao L, Zhou Y. Advances in microbial bioconversion of methanol. Sci Sin Chim, 2024

[5]

Singh HB, Kang M-K, Kwon M, Kim S-W. Developing methylotrophic microbial platforms for a methanol-based bioindustry. Front Bioeng Biotechnol, 2022

[6]

Azhari NJ, Erika D, Mardiana S, Ilmi T, Gunawan ML, Makertihartha IGBN, Kadja GTM. Methanol synthesis from CO2: a mechanistic overview. Res Eng, 2022

[7]

Parris D, Spinthiropoulos K, Ragazou K, Giovou A, Tsanaktsidis C. Methanol, a plugin marine fuel for green house gas reduction—a review. Energies, 2024

[8]

Zhang W, Song M, Yang Q, Dai Z, Zhang S, Xin F, Dong W, Ma J, Jiang M. Current advance in bioconversion of methanol to chemicals. Biotechnol Biofuels, 2018

[9]

Yahyazadeh A, Nanda S, Dalai AK. A critical review of the sustainable production and application of methanol as a biochemical and bioenergy carrier. Reactions, 2023, 5(1): 1-19

[10]

Pfeifenschneider J, Brautaset T, Wendisch VF. Methanol as carbon substrate in the bio-economy: metabolic engineering of aerobic methylotrophic bacteria for production of value-added chemicals. Biofuels Bioprod Biorefin, 2017, 11(4): 719-731

[11]

Jiang W, Hernández Villamor D, Peng H, Chen J, Liu L, Haritos V, Ledesma-Amaro R. Metabolic engineering strategies to enable microbial utilization of C1 feedstocks. Nat Chem Biol, 2021, 17(8): 845-855

[12]

Gregory GJ, Bennett RK, Papoutsakis ET. Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs. Metab Eng, 2022, 71: 99-116

[13]

Cai P, Wu X, Deng J, Gao L, Shen Y, Yao L, Zhou YJ. Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris</i>. Proc Natl Acad Sci U S A, 2022, 119(29 e2201711119

[14]

Gao J, Li Y, Yu W, Zhou YJ. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol. Nat Metab, 2022, 4(7): 932-943

[15]

Liang W-F, Cui L-Y, Cui J-Y, Yu K-W, Yang S, Wang T-M, Guan C-G, Zhang C, Xing X-H. Biosensor-assisted transcriptional regulator engineering for Methylobacterium extorquens AM1 to improve mevalonate synthesis by increasing the acetyl-CoA supply. Metab Eng, 2017, 39: 159-168

[16]

Drejer EB, Chan DTC, Haupka C, Wendisch VF, Brautaset T, Irla M. Methanol-based acetoin production by genetically engineeredBacillus methanolicus. Green Chem, 2020, 22(3): 788-802

[17]

Reiter MA, Bradley T, Büchel LA, Keller P, Hegedis E, Gassler T, Vorholt JA. A synthetic methylotrophic Escherichia coli as a chassis for bioproduction from methanol. Nat Catal, 2024, 7(5): 560-573

[18]

Qian J, Wang Y, Hu Z, Shi T, Wang Y, Ye C, Huang H. Bacillus sp. as a microbial cell factory: advancements and future prospects. Biotechnol Adv, 2023

[19]

Heggeset TMB, Krog A, Balzer S, Wentzel A, Ellingsen TE, Brautaset T. Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of l-lysine and l-glutamate from methanol. Appl Environ Microbiol, 2012, 78(15): 5170-5181

[20]

Irla M, Nærdal I, Brautaset T, Wendisch VF. Methanol-based γ-aminobutyric acid (GABA) production by genetically engineered Bacillus methanolicus strains. Ind Crops Prod, 2017, 106: 12-20

[21]

Nærdal I, Pfeifenschneider J, Brautaset T, Wendisch VF. Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. Microb Biotechnol, 2015, 8(2): 342-350

[22]

Klein VJ, Brito LF, Perez-Garcia F, Brautaset T, Irla M. Metabolic engineering of thermophilic Bacillus methanolicus for riboflavin overproduction from methanol. Microb Biotechnol, 2023, 16(5): 1011-1026

[23]

Yang X, Zheng Z, Wang Y. Bacillus methanolicus: an emerging chassis for low-carbon biomanufacturing. Trends Biotechnol, 2025, 43(2): 274-277

[24]

Gan Y, Meng X, Gao C, Song W, Liu L, Chen X. Metabolic engineering strategies for microbial utilization of methanol. Eng Microbiol, 2023

[25]

Neef J, van Dijl JM, Buist G. Recombinant protein secretion by Bacillus subtilis and Lactococcus lactis: pathways, applications, and innovation potential. Essays Biochem, 2021, 65(2): 187-195

[26]

Xu X, Kovács ÁT. How to identify and quantify the members of the Bacillus genus?. Environ Microbiol, 2024, 26(2 e16593

[27]

Xu X, Yu L, Xu G, Wang Q, Wei S, Tang X. Bacillus yapensis sp. nov., a novel piezotolerant bacterium isolated from deep-sea sediment of the Yap Trench, Pacific Ocean. Antonie Van Leeuwenhoek, 2020, 113(3): 389-396

[28]

Halimi B, Dortu C, Arguelles-Arias A, Thonart P, Joris B, Fickers P. Antilisterial activity on poultry meat of amylolysin, a bacteriocin from Bacillus amyloliquefaciens GA1. Probiotics Antimicrob Proteins, 2010, 2(2): 120-125

[29]

Larsen Ø, Bjerga GEK. Development of versatile vectors for heterologous expression in Bacillus. Microorganisms, 2018, 6(2): 51

[30]

Zhang K, Su L, Wu J. Recent advances in recombinant protein production by Bacillus subtilis. Annu Rev Food Sci Technol, 2020, 11(1295-318

[31]

Wu XC, Lee W, Tran L, Wong SL. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J Bacteriol, 1991, 173(16): 4952-4958

[32]

van Dijl JM, Hecker M. Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Fact, 2013, 12: 3

[33]

Youran L, Zhenghua G, Liang Z, Zhongyang D, Guiyang S. Gene knockout of Bacillus licheniformis mediated by CRISPR/Cas9 system. Genomics Appl Biol, 2017, 36(10): 4188-4196

[34]

Shahzad R, Khan AL, Waqas M, Ullah I, Bilal S, Kim Y-H, Asaf S, Kang S-M, Lee I-J. Metabolic and proteomic alteration in phytohormone-producing endophytic Bacillus amyloliquefaciens RWL-1 during methanol utilization. Metabolomics, 2019

[35]

Yao K, Zhou Q-x, Liu D-m, Chen S-m, Yuan K. Comparative proteomics of the metabolic pathways involved in l-lactic acid production in Bacillus coagulans BCS13002 using different carbon sources. LWT, 2019, 116 108445

[36]

Goodswen SJ, Barratt JLN, Kennedy PJ, Kaufer A, Calarco L, Ellis JT. Machine learning and applications in microbiology. FEMS Microbiol Rev, 2021

[37]

Sheehan MC, Bailey CJ, Dowds BCA, McConnell DJ. A new alcohol dehydrogenase, reactive towards methanol, from Bacillus stearothermophilus. Biochem J, 1988, 252(3661-666

[38]

Meng Q, Wang D, Fu X, Geng W, Zheng H, Bai W. Converting Bacillus subtilis 168 to a synthetic methylotroph by combinatorial metabolic regulation strategies. J Agric Food Chem, 2025, 73(8): 4755-4763

[39]

Gao B, Zhao N, Deng J, Gu Y, Jia S, Hou Y, Lv X, Liu L. Constructing a methanol-dependent Bacillus subtilis by engineering the methanol metabolism. J Biotechnol, 2022, 343: 128-137

[40]

Zhan C, Li X, Yang Y, Nielsen J, Bai Z, Chen Y. Strategies and challenges with the microbial conversion of methanol to high-value chemicals. Biotechnol Bioeng, 2021, 118(10): 3655-3668

[41]

Sarwar A, Lee EY. Methanol-based biomanufacturing of fuels and chemicals using native and synthetic methylotrophs. Synth Syst Biotechnol, 2023, 8(3): 396-415

[42]

Fan L, Wang Y, Zheng P, Sun J. Methanol dehydrogenase, a key enzyme of one-carbon metabolism: a review. Chin J Biotechnol, 2021, 37(2): 530-540

[43]

Whitaker WB, Sandoval NR, Bennett RK, Fast AG, Papoutsakis ET. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization. Curr Opin Biotechnol, 2015, 33: 165-175

[44]

Ochsner AM, Müller JEN, Mora CA, Vorholt JA. In vitro activation of NAD-dependent alcohol dehydrogenases by Nudix hydrolases is more widespread than assumed. FEBS Lett, 2014, 588(17): 2993-2999

[45]

Kloosterman H, Vrijbloed JW, Dijkhuizen L. Molecular, biochemical, and functional characterization of a Nudix hydrolase protein that stimulates the activity of a nicotinoprotein alcohol dehydrogenase*. J Biol Chem, 2002, 277(38): 34785-34792

[46]

Hektor HJ, Kloosterman H, Dijkhuizen L. Identification of a magnesium-dependent NAD(P)(H)-binding domain in the nicotinoprotein methanol dehydrogenase from Bacillus methanolicus *. J Biol Chem, 2002, 277(49): 46966-46973

[47]

Kamps JJAG, Hopkinson RJ, Schofield CJ, Claridge TDW. How formaldehyde reacts with amino acids. Commun Chem, 2019, 2(1): 126

[48]

Yurimoto H, Kato N, Sakai Y. Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism. Chem Record, 2005, 5(6367-375

[49]

Orita I, Fukui T. Metabolic engineering of methylotroph for biosynthesis of biodegradable copolyesters from methanol. J Japan Petroleum Inst, 2022, 65(6): 213-220

[50]

Wang Y, Fan L, Tuyishime P, Zheng P, Sun J. Synthetic methylotrophy: a practical solution for methanol-based biomanufacturing. Trends Biotechnol, 2020, 38(6): 650-666

[51]

Zhang W, Zhang T, Wu S, Wu M, Xin F, Dong W, Ma J, Zhang M, Jiang M. Guidance for engineering of synthetic methylotrophy based on methanol metabolism in methylotrophy. RSC Adv, 2017, 7(7): 4083-4091

[52]

Brautaset T, Jakobsen ØM, Josefsen KD, Flickinger MC, Ellingsen TE. Bacillus methanolicus: a candidate for industrial production of amino acids from methanol at 50°C. Appl Microbiol Biotechnol, 2007, 74(1): 22-34

[53]

James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet, 2025, 26(5): 298-319

[54]

Espinosa MI, Gonzalez-Garcia RA, Valgepea K, Plan MR, Scott C, Pretorius IS, Marcellin E, Paulsen IT, Williams TC. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat Commun, 2020, 11(1): 5564

[55]

Chen FY, Jung HW, Tsuei CY, Liao JC. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol. Cell, 2020, 182(4933-946.e14

[56]

Wang S, Wang Y, Yuan Q, Yang L, Zhao F, Lin Y, Han S. Development of high methanol-tolerance Pichia pastoris based on iterative adaptive laboratory evolution. Green Chem, 2023, 25(21): 8845-8857

[57]

Wang Y, Fan L, Tuyishime P, Liu J, Zhang K, Gao N, Zhang Z, Ni X, Feng J, Yuan Q, Ma H, Zheng P, Sun J, Ma Y. Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum. Commun Biol, 2020, 3(1): 217

[58]

Yi J, Lee J, Sung BH, Kang D-K, Lim G, Bae J-H, Lee S-G, Kim SC, Sohn J-H. Development of Bacillus methanolicus methanol dehydrogenase with improved formaldehyde reduction activity. Sci Rep, 2018

[59]

Müller JEN, Meyer F, Litsanov B, Kiefer P, Potthoff E, Heux S, Quax WJ, Wendisch VF, Brautaset T, Portais J-C, Vorholt JA. Engineering Escherichia coli for methanol conversion. Metab Eng, 2015, 28: 190-201

[60]

Witthoff S, Schmitz K, Niedenführ S, Nöh K, Noack S, Bott M, Marienhagen J, Spormann AM. Metabolic engineering of Corynebacterium glutamicum for methanol metabolism. Appl Environ Microbiol, 2015, 81(62215-2225

[61]

Price JV, Chen L, Whitaker WB, Papoutsakis E, Chen W. Scaffoldless engineered enzyme assembly for enhanced methanol utilization. Proc Natl Acad Sci USA, 2016, 113(45): 12691-12696

[62]

Fan L, Wang Y, Tuyishime P, Gao N, Li Q, Zheng P, Sun J, Ma Y. Engineering artificial fusion proteins for enhanced methanol bioconversion. ChemBioChem, 2018, 19(23): 2465-2471

[63]

Bogorad IW, Lin T-S, Liao JC. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature, 2013, 502(7473): 693-697

[64]

Bogorad IW, Chen C-T, Theisen MK, Wu T-Y, Schlenz AR, Lam AT, Liao JC. Building carbon–carbon bonds using a biocatalytic methanol condensation cycle. Proc Natl Acad Sci USA, 2014, 111(45): 15928-15933

[65]

Lu X, Liu Y, Yang Y, Wang S, Wang Q, Wang X, Yan Z, Cheng J, Liu C, Yang X, Luo H, Yang S, Gou J, Ye L, Lu L, Zhang Z, Guo Y, Nie Y, Lin J, Li S, Tian C, Cai T, Zhuo B, Ma H, Wang W, Ma Y, Liu Y, Li Y, Jiang H. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design. Nat Commun, 2019, 10(1): 1378

[66]

Meng X, Hu G, Li X, Gao C, Song W, Wei W, Wu J, Liu L. A synthetic methylotroph achieves accelerated cell growth by alleviating transcription-replication conflicts. Nat Commun, 2025, 16(131

[67]

Yu H, Liao JC. A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds. Nat Commun, 2018, 9(13992

[68]

He H, Höper R, Dodenhöft M, Marlière P, Bar-Even A. An optimized methanol assimilation pathway relying on promiscuous formaldehyde-condensing aldolases in E. coli. Metab Eng, 2020, 60: 1-13

[69]

Kim S, Lindner SN, Aslan S, Yishai O, Wenk S, Schann K, Bar-Even A. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat Chem Biol, 2020, 16(5538-545

[70]

Gleizer S, Ben-Nissan R, Bar-On YM, Antonovsky N, Noor E, Zohar Y, Jona G, Krieger E, Shamshoum M, Bar-Even A, Milo R. Conversion of Escherichia coli to generate all biomass carbon from CO(2). Cell, 2019, 179(6): 1255-1263.e12

[71]

Guo F, Wu M, Zhang S, Feng Y, Jiang Y, Jiang W, Xin F, Zhang W, Jiang M. Improved succinic acid production through the reconstruction of methanol dissimilation in Escherichia coli. Bioresour Bioprocess, 2022, 9(1): 62

[72]

Chou A, Clomburg JM, Qian S, Gonzalez R. 2-hydroxyacyl-CoA lyase catalyzes acyloin condensation for one-carbon bioconversion. Nat Chem Biol, 2019, 15(9900-906

[73]

Wu T, Gómez-Coronado PA, Kubis A, Lindner SN, Marlière P, Erb TJ, Bar-Even A, He H. Engineering a synthetic energy-efficient formaldehyde assimilation cycle in Escherichia coli. Nat Commun, 2023, 14(1): 8490

[74]

Qu K, Guo F, Liu X, Lin Y, Zou Q. Application of machine learning in microbiology. Front Microbiol, 2019, 10: 827

[75]

Oyetunde T, Bao FS, Chen JW, Martin HG, Tang YJ. Leveraging knowledge engineering and machine learning for microbial bio-manufacturing. Biotechnol Adv, 2018, 36(41308-1315

[76]

Ma R, Li Y, Zhang M, Xu F. Methanol tolerance upgrading of Proteus mirabilis lipase by machine learning-assisted directed evolution. Syst Microbiol Biomanuf, 2023, 3(3427-439

[77]

Arfman N, Watling EM, Clement W, van Oosterwijk RJ, de Vries GE, Harder W, Attwood MM, Dijkhuizen L. Methanol metabolism in thermotolerant methylotrophic Bacillus strains involving a novel catabolic NAD-dependent methanol dehydrogenase as a key enzyme. Arch Microbiol, 1989, 152(3): 280-288

[78]

Arfman N, Van Beeumen J, De Vries GE, Harder W, Dijkhuizen L. Purification and characterization of an activator protein for methanol dehydrogenase from thermotolerant Bacillus spp. J Biol Chem, 1991, 266(6): 3955-3960

[79]

Vonck J, Arfman N, De Vries GE, Van Beeumen J, Van Bruggen EF, Dijkhuizen L. Electron microscopic analysis and biochemical characterization of a novel methanol dehydrogenase from the thermotolerant Bacillus sp. C1. J Biol Chem, 1991, 266(6): 3949-3954

[80]

Wamelink MMC, Struys EA, Jakobs C. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. J Inherit Metab Dis, 2008, 31(6): 703-717

[81]

Vu Huong N, Subuyuj Gabriel A, Vijayakumar S, Good Nathan M, Martinez-Gomez NC, Skovran E. Lanthanide-dependent regulation of methanol oxidation systems in Methylobacterium extorquens AM1 and their contribution to methanol growth. J Bacteriol, 2016, 198(8): 1250-1259

[82]

Cai P, Li Y, Zhai X, Yao L, Ma X, Jia L, Zhou YJ. Microbial synthesis of long-chain α-alkenes from methanol by engineering Pichia pastoris. Bioresour Bioprocess, 2022, 9(1): 58

[83]

Woolston BM, Stephanopoulos G. Engineering E. coli to grow on methanol. Joule, 2020, 4(102070-2072

[84]

Xu DY, Leung KM, Lai GKK, Leung FCC, Griffin SDJ. Complete genome sequence of Klebsiella pneumoniae RX.G5M15, a methanol-metabolizing strain recovered from the sole of a shoe. Microbiol Resour Announc, 2024

[85]

Sun J, Yue H, Ma W, Ding S, Jiang Y, Zhang W, Jiang W, Xin F, Jiang M. Breeding and genomic analysis of the high PQQ-producing strain Hyphomicrobium denitrificans NJTU3-43. Chem Eng J, 2025, 511 162001

[86]

Luo J, Huang G, Zheng M, Ou C, Chen Q, Ling Y, Cai L, Yang Y, Liu L, Huang F, Hu Z, Zheng Y. Atmospheric and room temperature plasma mutagenesis of Graesiella emersonii for enhanced protein production using methanol as novel carbon source. Bioresour Technol, 2025, 435 132880

[87]

Lee GH, Hur W, Bremmon CE, Flickinger MC. Lysine production from methanol at 50°C using Bacillus methanolicus: modeling volume control, lysine concentration, and productivity using a three-phase continuous simulation. Biotechnol Bioeng, 2000, 49(6): 639-653

[88]

Cai HL, Shimada M, Nakagawa T. The potential and capability of the methylotrophic yeast Ogataea methanolica in a “methanol bioeconomy”. Yeast, 2022, 39(8): 440-448

[89]

Brautaset T, Jakobsen ØM, Degnes KF, Netzer R, Nærdal I, Krog A, Dillingham R, Flickinger MC, Ellingsen TE. Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for l-lysine production from methanol at 50°C. Appl Microbiol Biotechnol, 2010, 87(3): 951-964

[90]

Kou F, Zhao J, Liu J, Shen J, Ye Q, Zheng P, Li Z, Sun J, Ma Y. Characterization of a new lysine decarboxylase from Aliivibrio salmonicida for cadaverine production at alkaline pH. J Mol Catal B Enzym, 2016, 133: S88-S94

[91]

Kim HT, Baritugo K-A, Oh YH, Hyun SM, Khang TU, Kang KH, Jung SH, Song BK, Park K, Kim I-K, Lee MO, Kam Y, Hwang YT, Park SJ, Joo JC. Metabolic engineering of Corynebacterium glutamicum for the high-level production of cadaverine that can be used for the synthesis of biopolyamide 510. ACS Sustain Chem Eng, 2018, 6(4): 5296-5305

[92]

Kim HT, Baritugo KA. High-level conversion of l-lysine into cadaverine by Escherichia coli whole cell biocatalyst expressing Hafnia alvei l-lysine decarboxylase. Polymers (Basel), 2019

[93]

Irla M, Heggeset TMB, Nærdal I, Paul L, Haugen T, Le SB, Brautaset T, Wendisch VF. Genome-based genetic tool development for Bacillus methanolicus: theta- and rolling circle-replicating plasmids for inducible gene expression and application to methanol-based cadaverine production. Front Microbiol, 2016

[94]

Brito LF, Irla M, Nærdal I, Le SB, Delépine B, Heux S, Brautaset T. Evaluation of heterologous biosynthetic pathways for methanol-based 5-aminovalerate production by thermophilic Bacillus methanolicus. Front Bioeng Biotechnol, 2021

[95]

Kotzekidou P, BACILLUS | Geobacillus stearothermophilus (Formerly Bacillus stearothermophilus), in: C.A. Batt, M.L. Tortorello (Eds.), Encyclopedia of Food Microbiology (Second Edition), Academic Press, Oxford, 2014, pp. 129–134. https://doi.org/10.1016/B978-0-12-384730-0.00020-3.

[96]

Wells-Bennik MHJ, Janssen PWM, Klaus V, Yang C, Zwietering MH, Den Besten HMW. Heat resistance of spores of 18 strains of Geobacillus stearothermophilus and impact of culturing conditions. Int J Food Microbiol, 2019, 291: 161-172

[97]

Hussein AH, Lisowska BK, Leak DJ, Chapter One - The Genus Geobacillus and Their Biotechnological Potential, in: S. Sariaslani, G.M. Gadd (Eds.), Advances in Applied Microbiology, Academic Press. 2015, pp. 1–48. https://doi.org/10.1016/bs.aambs.2015.03.001.

[98]

ÿztürk S, ÿalık P, ÿzdamar TH. Fed-batch biomolecule production by Bacillus subtilis: a state of the art review. Trends Biotechnol, 2016, 34(4): 329-345

[99]

Zamboni N, Fischer E, Laudert D, Aymerich S, Hohmann HP, Sauer U. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway. J Bacteriol, 2004, 186(14): 4528-4534

[100]

Yi J, Lee J, Sung BH, Kang D-K, Lim G, Bae J-H, Lee S-G, Kim SC, Sohn J-H. Development of Bacillus methanolicus methanol dehydrogenase with improved formaldehyde reduction activity. Sci Rep, 2018, 8(112483

[101]

Wendisch VF, Kosec G, Heux S, Brautaset T, Aerobic Utilization of Methanol for Microbial Growth and Production, in: A.-P. Zeng, N.J. Claassens (Eds.), One-Carbon Feedstocks for Sustainable Bioproduction, Springer International Publishing, Cham, 2022, pp. 169–212. https://doi.org/10.1007/10_2021_177.

[102]

Heijstra BD, Leang C, Juminaga A. Gas fermentation: cellular engineering possibilities and scale up. Microb Cell Fact, 2017, 16(160

Funding

the National Key Research & Development Program of China(2020YFA0907700)

the Basic Research Program of Jiangsu and supported by the Jiangsu Basic Research Center for Synthetic Biology(BK20233003)

Wuxi Industrial Innovation Research Institute Pilot Technology Pre-research Project(XD24024)

the National Natural Foundation of China(32172174)

the Jiangsu Funding Program for Excellent Postdoctoral Talent (2024ZB371)

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

8

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/