Process integration of enzymatic and microbial PBAT conversion with a Pseudomonas taiwanensis mixed culture

Leonie Op de Hipt , Chiara Siracusa , Benedikt Wynands , Stephan Thies , Alessandro Pellis , Felice Quartinello , Georg M. Guebitz , Nick Wierckx

Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) : 16

PDF
Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) :16 DOI: 10.1007/s43393-025-00405-9
Original Article
research-article

Process integration of enzymatic and microbial PBAT conversion with a Pseudomonas taiwanensis mixed culture

Author information +
History +
PDF

Abstract

Enzymatic depolymerization of polyesters has been established as green recycling strategy to reduce plastic pollution. However, applied on industrially relevant mixed plastic waste, it generates a wide mixture of various oligomers and monomers, complicating downstream processing and monomer recycling. Several Pseudomonas taiwanensis strains have been engineered to grow on plastic monomers while producing valuable aromatics. This enables metabolic funneling of diverse monomers, supporting efficient bio-upcycling. Integrating hydrolysis and monomer conversion into one intensified process would increase the competitiveness of biotechnological upcycling. Therefore, a one-pot process was developed in which hydrolysis of poly(butylene adipate-co-terephthalate) (PBAT) via a cutinase from Humicola insolens (HiC) was coupled with cultivation of P. taiwanensis strains metabolizing the resulting monomers, adipic acid (AA), terephthalic acid (TA) and 1,4-butanediol (BDO). For this purpose, the buffer strength and stirring rate for PBAT-hydrolysis were adjusted for compatibility with cultivation of P. taiwanensis. An impact of various process settings on enzymatic hydrolysis was found with the temperature as main parameter, where enzymatic and microbial conversion conflict. Hence, two consecutive steps were carried out within one reactor—a 24-h hydrolysis at 70 °C, followed by inoculation with Pseudomonas after changing the conditions to 30 °C. Growth on PBAT was established this way, but the TA metabolism was strongly inhibited by the hydrolysate compared to pure TA. This is probably due to an inhibitory effect of AA and TA-containing oligomers on TA uptake or metabolism. After 10 days, all PBAT monomers were completely consumed, setting the path for a novel, industrially promising plastic upcycling concept.

Keywords

Consolidated bioprocessing / Bio-upcycling / Plastic circularity / Enzymatic plastic depolymerization / Microbial plastic upcycling / Pseudomonas taiwanensis / Process integration / PBAT / Humicola insolens cutinase

Cite this article

Download citation ▾
Leonie Op de Hipt, Chiara Siracusa, Benedikt Wynands, Stephan Thies, Alessandro Pellis, Felice Quartinello, Georg M. Guebitz, Nick Wierckx. Process integration of enzymatic and microbial PBAT conversion with a Pseudomonas taiwanensis mixed culture. Systems Microbiology and Biomanufacturing, 2026, 6(1): 16 DOI:10.1007/s43393-025-00405-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv, 2017, 3: 25-29

[2]

Andrady AL, Neal MA. Applications and societal benefits of plastics. Philos Trans R Soc Lond B Biol Sci, 2009, 364(1526): 1977-1984

[3]

Mafuta C, Baker E, Rucevska I, Maes T, Rosendahl Appelquist L, Macmillan-Lawler M, et al. Marine Litter and Plastic Waste Vital Graphics. UNEP, Secr. Basel, Rotterdam Stock. Secr. GRID-Arendal. 2021.

[4]

Tokiwa Y, Suzuki T. Hydrolysis of polyesters by lipases. Nature, 1977, 270(5632): 76-78

[5]

Herrera DAG, Mojicevic M, Pantelic B, Joshi A, Collins C, Batista M, et al.. Exploring microorganisms from plastic-polluted sites: unveiling plastic degradation and PHA production potential. Microorganisms, 2023, 11: 2914

[6]

Taghavi N, Singhal N, Zhuang WQ, Baroutian S. Degradation of plastic waste using stimulated and naturally occurring microbial strains. Chemosphere, 2021, 263 127975

[7]

Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, et al.. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 2016, 351: 1196-1199

[8]

Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclairm E, et al.. An engineered PET depolymerase to break down and recycle plastic bottles. Nature, 2020, 580: 216-219

[9]

Yang Y, Min J, Xue T, Jiang P, Liu X, Peng R, et al.. Complete bio-degradation of poly(butylene adipate-co-terephthalate) via engineered cutinases. Nat Commun, 2023

[10]

Kallscheuer N, Gätgens J, Lübcke M, Pietruszka J, Bott M, Polen T. Improved production of adipate with Escherichia coli by reversal of β-oxidation. Appl Microbiol Biotechnol, 2017, 101: 2371-2382

[11]

Pyo SH, Park JH, Srebny V, Hatti-Kaul R. A sustainable synthetic route for biobased 6-hydroxyhexanoic acid, adipic acid and ϵ-caprolactone by integrating bio- and chemical catalysis. Green Chem, 2020, 22: 4450-4455

[12]

Burgard A, Burk MJ, Osterhout R, Van Dien S, Yim H. Development of a commercial scale process for production of 1,4-butanediol from sugar. Curr Opin Biotechnol, 2016, 42: 118-125

[13]

Perz V, Bleymaier K, Sinkel C, Kueper U, Bonnekessel M, Ribitsch D, et al.. Substrate specificities of cutinases on aliphatic-aromatic polyesters and on their model substrates. New Biotechnol, 2016, 33: 295-304

[14]

Biundo A, Hromic A, Pavkov-Keller T, Gruber K, Quartinello F, Haernvall K, et al.. Characterization of a poly(butylene adipate-co-terephthalate)-hydrolyzing lipase from Pelosinus fermentans. Appl Microbiol Biotechnol, 2016, 100: 1753-1764

[15]

Wallace PW, Haernvall K, Ribitsch D, Zitzenbacher S, Schittmayer M, Steinkellner G, et al.. PpEst is a novel PBAT degrading polyesterase identified by proteomic screening of Pseudomonas pseudoalcaligenes. Appl Microbiol Biotechnol, 2017, 101: 2291-2303

[16]

Sonnendecker C, Oeser J, Richter PK, Hille P, Zhao Z, Fischer C, et al.. Low carbon footprint recycling of post-consumer PET plastic with a metagenomic polyester hydrolase. Chemsuschem, 2022

[17]

Herbert J, Beckett AH, Robson SC. A review of cross-disciplinary approaches for the identification of novel industrially relevant plastic-degrading enzymes. Sustainability, 2022, 14: 15898

[18]

Frey B, Aiesi M, Rast BM, Rüthi J, Julmi J, Stierli B, et al.. Searching for new plastic-degrading enzymes from the plastisphere of alpine soils using a metagenomic mining approach. PLoS ONES ONE, 2024, 19: 1-23

[19]

Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, et al.. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci USA, 2018, 115: E4350-E4357

[20]

Avilan L, Lichtenstein BR, König G, Zahn M, Allen MD, Oliveira L, et al.. Concentration-dependent inhibition of mesophilic PETases on poly(ethylene terephthalate) can be eliminated by enzyme engineering. Chemsuschem, 2023, 16: 1-12

[21]

Knott BC, Erickson E, Allen MD, Gado JE, Graham R, Kearns FL, et al.. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc Natl Acad Sci USA, 2020, 117: 25476-25485

[22]

Tournier V, Duquesne S, Guillamot F, Cramail H, Taton D, Marty A, et al.. Enzymes’ power for plastics degradation. Chem Rev, 2023, 123: 5612-5701

[23]

Wei R, Von Haugwitz G, Pfaff L, Mican J, Badenhorst CPS, Liu W, Weber G, Austin HP, Bednar D, Damborsky J, Bornscheuer UT. Mechanism-based design of efficient PET hydrolases. ACS Catal, 2022, 12(6): 3382-3396

[24]

Ismail M, Abouhmad A, Warlin N, Pyo SH, Örn OE, Al-Rudainy B, et al.. Closing the loop for poly(butylene-adipate-co-terephthalate) recycling: depolymerization, monomers separation, and upcycling. Green Chem, 2024, 26: 3863-3873

[25]

Tiso T, Winter B, Wei R, Hee J, de Witt J, Wierckx N, Quicker P, Bornscheuer UT, Bardow A, Nogales J, Blank LM. The metabolic potential of plastics as biotechnological carbon sources – review and targets for the future. Metab Eng, 2022, 71: 77-98

[26]

Sullivan KP, Werner AZ, Ramirez KJ, Ellis LD, Bussard JR, Black BA, et al.. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science, 2022, 378: 207-211

[27]

Klauer RR, Hansen DA, Wu D, Monteiro LMO, Solomon KV, Blenner MA. Biological upcycling of plastics waste. Annu Rev Chem Biomol Eng, 2024, 15(1): 315-342

[28]

Mihalyi S, Tagliavento M, Boschmeier E, Archodoulaki VM, Bartl A, Quartinello F, Guebitz GM. Simultaneous saccharification and fermentation with Weizmannia coagulans for recovery of synthetic fibers and production of lactic acid from blended textile waste. Resour Conserv Recycl, 2023, 196 107060

[29]

Vecchiato S, Skopek L, Russmayer H, Steiger MG, Aldrian A, Beer B, et al.. Microbial production of high value molecules using rayon waste material as carbon-source. New Biotechnol, 2019, 51: 8-13

[30]

Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl Microbiol Biotechnol, 2020, 104: 7745-7766

[31]

Bitzenhofer NL, Kruse L, Thies S, Wynands B, Lechtenberg T, Rönitz J, Kozaeva E, Wirth NT, Eberlein C, Jaeger KE, Nikel PI, Heipieper HJ, Wierckx N, Loeschcke A. Towards robust Pseudomonas cell factories to harbour novel biosynthetic pathways. Essays Biochem, 2021, 65(2): 319-336

[32]

De Lorenzo V, Pérez-pantoja D, Nikel PI. Pseudomonas putida KT2440: the long journey of a soil-dweller to become a synthetic biology chassis. J Bacteriol, 2024

[33]

Ackermann YS, Li WJ, de Op Hipt L, Niehoff PJ, Casey W, Polen T, et al.. Engineering adipic acid metabolism in Pseudomonas putida. Metab Eng, 2021, 67: 29-40

[34]

Ackermann YS, de Witt J, Mezzina MP, Schroth C, Polen T, Nikel PI, et al.. Bio-upcycling of even and uneven medium-chain-length diols and dicarboxylates to polyhydroxyalkanoates using engineered Pseudomonas putida. Microb Cell Fact, 2024, 23: 1-15

[35]

Brandenberg OF, Schubert T, Kruglyak L. Towards synthetic PETtrophy: engineering Pseudomonas putida for concurrent polyethylene terephthalate (PET) monomer metabolism and PET hydrolase expression. Microb Cell Fact, 2022, 21: 1-29

[36]

Franden MA, Jayakody LN, Li WJ, Wagner NJ, Cleveland NS, Michener WE, Hauer B, Blank LM, Wierckx N, Klebensberger J, Beckham GT. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization. Metab Eng, 2018, 48: 197-207

[37]

Li W, Jayakody LN, Franden MA, Wehrmann M, Daun T, Hauer B, Blank LM, Beckham GT, Klebensberger J, Wierckx N. Laboratory evolution reveals the metabolic and regulatory basis of ethylene glycol metabolism by Pseudomonas putida KT2440. Environ Microbiol, 2019, 21(10): 3669-3682

[38]

Li WJ, Narancic T, Kenny ST, Niehoff PJ, O’Connor K, Blank LM, et al.. Unraveling 1,4-butanediol metabolism in Pseudomonas putida KT2440. Front Microbiol, 2020, 11: 1-15

[39]

Op de Hipt L, Ackermann YS, de Jong H, Polen T, Wynands B, Wierckx N. Engineering of 1,4-butanediol and adipic acid metabolism in for upcycling to aromatic compounds. Microb Biotechnol, 2025, 18 e70205

[40]

Werner AZ, Avina YSC, Johnsen J, Bratti F, Alt HM, Mohamed ET, Clare R, Mand TD, Guss AM, Feist AM, Beckham GT. Adaptive laboratory evolution and genetic engineering improved terephthalate utilization in Pseudomonas putida KT2440. Metab Eng, 2025, 88: 196-205

[41]

de Witt J, Luthe T, Wiechert J, Jensen K, Polen T, Wirtz A, et al.. Upcycling of polyamides through chemical hydrolysis and engineered Pseudomonas putida. Nat Microbiol, 2025, 10: 667-680

[42]

Utomo RNC, Li WJ, Tiso T, Eberlein C, Doeker M, Heipieper HJ, et al.. Defined microbial mixed culture for utilization of polyurethane monomers. ACS Sustain Chem Eng, 2020, 8: 17466-17474

[43]

Welsing G, Wolter B, Kleinert GEK, Göttsch F, Besenmatter W, Xue R, et al.. Two-step biocatalytic conversion of post-consumer polyethylene terephthalate into value-added products facilitated by genetic and bioprocess engineering. Bioresour Technol, 2025

[44]

Werner AZ, Clare R, Mand TD, Pardo I, Ramirez KJ, Haugen SJ, Bratti F, Dexter GN, Elmore JR, Huenemann JD, Peabody GLV, Johnson CW, Rorrer NA, Salvachúa D, Guss AM, Beckham GT. Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to β-ketoadipic acid by Pseudomonas putida KT2440. Metab Eng, 2021, 67: 250-261

[45]

Schwanemann T, Otto M, Wierckx N, Wynands B. Pseudomonas as versatile aromatics cell factory. Biotechnol J, 2020, 15: 1900569

[46]

Wynands B, Otto M, Runge N, Preckel S, Polen T, Blank LM, et al.. Streamlined Pseudomonas taiwanensis VLB120 chassis strains with improved bioprocess features. ACS Synth Biol, 2019, 8: 2036-2050

[47]

Wynands B, Kofler F, Sieberichs A, da Silva N, Wierckx N. Engineering a Pseudomonas taiwanensis 4-coumarate platform for production of para-hydroxy aromatics with high yield and specificity. Metab Eng, 2023, 78: 115-127

[48]

Banner A, Toogood HS, Scrutton NS. Consolidated bioprocessing: synthetic biology routes to fuels and fine chemicals. Microorganisms, 2021, 9: 1079

[49]

Ellis LD, Rorrer NA, Sullivan KP, Otto M, McGeehan JE, Román-Leshkov Y, et al.. Chemical and biological catalysis for plastics recycling and upcycling. Nat Catal, 2021, 4: 539-556

[50]

Ackermann YS. Enabling mixed microbial upcycling of plastic monomers. Heinrich Heine University Düsseldorf; 2023.

[51]

Hartmans S, Smits JP, Van der Werf MJ, Volkering F, De Bont JAM. Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X. Appl Environ Microbiol, 1989, 55: 2850-2855

[52]

Pang W, Li B, Wu Y, Zeng Q, Yang J, Zhang Y, Tian S. Upgraded recycling of biodegradable PBAT plastic: efficient hydrolysis and electrocatalytic conversion. Chem Eng J, 2024, 486 150342

[53]

Zumstein MT, Rechsteiner D, Roduner N, Perz V, Ribitsch D, Guebitz GM, et al.. Enzymatic hydrolysis of polyester thin films at the nanoscale: effects of polyester structure and enzyme active-site accessibility. Environ Sci Technol, 2017, 51: 7476-7485

[54]

Zobel S, Benedetti I, Eisenbach L, De Lorenzo V, Wierckx N, Blank LM. Tn7-based device for calibrated heterologous gene expression in Pseudomonas putida. ACS Synth Biol, 2015, 4: 1341-1351

[55]

Narancic T, Salvador M, Hughes GM, Beagan N, Abdulmutalib U, Kenny ST, Wu H, Saccomanno M, Um J, O’Connor KE, Jiménez JI. Genome analysis of the metabolically versatile Pseudomonas umsongensis GO16 : the genetic basis for PET monomer upcycling into polyhydroxyalkanoates. Microb Biotechnol, 2021, 14(6): 2463-2480

[56]

Schmidt J, Wei R, Oeser T, Belisário-Ferrari MR, Barth M, Then J, et al.. Effect of Tris, MOPS, and phosphate buffers on the hydrolysis of polyethylene terephthalate films by polyester hydrolases. FEBS Open Bio, 2016, 6: 919-927

[57]

Ronkvist M, Xie W, Lu W, Gross RA. Cutinase-catalyzed hydrolysis of poly ( ethylene terephthalate ). Macromolecules, 2009, 42: 5128-5138

[58]

Charm SE, Wong BL. Shear effects on enzymes. Enzyme Microb Technol, 1981, 3(2): 111-118

[59]

Lou H, Zeng M, Hu Q, Cai C, Lin X, Qiu X, Yang D, Pang Y. Nonionic surfactants enhanced enzymatic hydrolysis of cellulose by reducing cellulase deactivation caused by shear force and air-liquid interface. Bioresour Technol, 2018, 249: 1-8

[60]

Kaya F, Heitmann JA, Joyce TW. Cellulase binding to cellulose fibers in high shear fields. J Biotechnol, 1994, 36(1): 1-10

[61]

Demling P, Ankenbauer A, Klein B, Noack S, Tiso T, Takors R, Blank LM. Pseudomonas putida KT2440 endures temporary oxygen limitations. Biotechnol Bioeng, 2021, 118(12): 4735-4750

[62]

Routledge SJ. Beyond de-foaming: the effects of antifoams on bioprocess productivity. Comput Struct Biotechnol J, 2012, 3 e201210001

[63]

Tiso T, Demling P, Karmainski T, Oraby A, Eiken J, Liu L, et al.. Foam control in biotechnological processes—challenges and opportunities. Discov Chem Eng, 2024, 4 2

Funding

Forschungszentrum Jülich GmbH (4205)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/