Engineering of thermostable endo-polygalacturonase to generate prebiotic-active pectic oligosaccharides

Xin-Yi Mao , Meng-Jie Hao , Yu-Chen Wang , Shang Wang , Dan Wu , Yan Xu , Xiu-Mei Tao , Xiao-Wei Yu

Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) : 9

PDF
Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) :9 DOI: 10.1007/s43393-025-00404-w
Original Article
research-article

Engineering of thermostable endo-polygalacturonase to generate prebiotic-active pectic oligosaccharides

Author information +
History +
PDF

Abstract

Endo-polygalacturonases are valuable for decomposing pectin into functional oligosaccharides, which exhibit various bioactivities such as prebiotic, anticancer, and antibacterial effects. In this work, a novel endo-polygalacturonase from Penicillium arizonense (Kp-pePGB) was heterologously expressed in Komagataella phaffii. The recombinant enzyme showed optimal activity at 65 °C and pH 5.0, along with broad pH stability (pH 3.5–8.0). Nonetheless, its thermal instability limited its industrial utility. To address this, structure-based rational design was employed to engineer stabilizing mutations. The triple mutant E257C/N286C/D207N exhibited a remarkable 11.6-fold increase in residual activity after incubation at 55 °C for 60 min, without compromising catalytic performance. Molecular dynamics simulations suggested that the enhanced thermostability arose from newly introduced disulfide bonds and optimized electrostatic interactions. Importantly, the mutant efficiently generated pectic oligosaccharides, which significantly promoted the growth of beneficial probiotics including Pediococcus acidilacticiLactobacillus paracasei, and Lactobacillus plantarum, demonstrating their prebiotic potential. This study not only provides a promising endo-polygalacturonase for the production of prebiotic oligosaccharides under thermally demanding conditions, but also offers an effective engineering strategy for improving the thermostability of other enzymes in the polygalacturonase family.

Keywords

Endo-polygalacturonase / Thermostability / Rational design / Pectic oligosaccharide / Prebiotic activity

Cite this article

Download citation ▾
Xin-Yi Mao, Meng-Jie Hao, Yu-Chen Wang, Shang Wang, Dan Wu, Yan Xu, Xiu-Mei Tao, Xiao-Wei Yu. Engineering of thermostable endo-polygalacturonase to generate prebiotic-active pectic oligosaccharides. Systems Microbiology and Biomanufacturing, 2026, 6(1): 9 DOI:10.1007/s43393-025-00404-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol, 2008, 11(3): 266-277

[2]

Ropartz D, Ralet M-C. Pectin: Technological and physiological properties. In: Kontogiorgos, V. (eds) Pectin structure. Springer, Cham., In Pectin structure. 2020;17–36.

[3]

Tang W, Han T, Liu W, He J, Liu J. Pectic oligosaccharides: enzymatic preparation, structure, bioactivities and application. Crit Rev Food Sci Nutr, 2025, 65(11): 2117-2133

[4]

Gullón B, Gómez B, Martínez-Sabajanes M, Yáñez R, Parajó J, Alonso J. Pectic oligosaccharides: manufacture and functional properties. Trends Food Sci Technol, 2013, 30: 153-161

[5]

Van Alebeek G-J, Zabotina O, Beldman G, Schols H, Voragen A. Esterification and glycosydation of oligogalacturonides: examination of the reaction products using MALDI-TOF MS and HPAEC. Carbohydr Polym, 2000, 43(1): 39-46

[6]

Shrestha S, Rahman MS, Qin W. New insights in pectinase production development and industrial applications. Appl Microbiol Biotechnol, 2021, 105(24): 9069-9087

[7]

van Santen Y, Benen JA, Schröter K-H, Kalk KH, Armand S, Visser J, Dijkstra BW. 1.68-Å crystal structure of endopolygalacturonase II from Aspergillus niger and identification of active site residues by site-directed mutagenesis. J Biol Chem, 1999, 274: 30474-30480

[8]

Tounsi H, Sassi AH, Romdhane ZB, Lajnef M, Dupuy J-W, Lapaillerie D, Lomenech A-M, Bonneu M, Gargouri A, Hadj-Taieb N. Catalytic properties of a highly thermoactive polygalacturonase from the mesophilic fungus Penicillium occitanis and use in juice clarification. J Mol Catal B Enzym, 2016, 127: 56-66

[9]

Cheng Z, Chen D, Wang Q, Xian L, Lu B, Wei Y, Tang H, Lu Z, Zhu Q, Chen Y. Identification of an acidic endo-polygalacturonase from Penicillium oxalicum CZ1028 and its broad use in major tropical and subtropical fruit juices production. J Biosci Bioeng, 2017, 123(6): 665-672

[10]

Cheng Z, Xian L, Chen D, Lu J, Wei Y, Du L, Wang Q, Chen Y, Lu B, Bi D. Development of an innovative process for high-temperature fruit juice extraction using a novel thermophilic endo-polygalacturonase from Penicillium oxalicum. Front Microbiol, 2020, 11: 1200

[11]

Tu T, Meng K, Huang H, Luo H, Bai Y, Ma R, Su X, Shi P, Yang P, Wang Y. Molecular characterization of a thermophilic endo-polygalacturonase from Thielavia arenaria XZ7 with high catalytic efficiency and application potential in the food and feed industries. J Agric Food Chem, 2014, 62(52): 12686-12694

[12]

Nezhad NG, Abd Rahman RNZR, Normi YM, Oslan SN, Shariff FM, Leow TC. Recent advances in simultaneous thermostability-activity improvement of industrial enzymes through structure modification. Int J Biol Macromol, 2023, 232: 123440

[13]

Rahban M, Zolghadri S, Salehi N, Ahmad F, Haertlé T, Rezaei-Ghaleh N, Sawyer L, Saboury AA. Thermal stability enhancement: fundamental concepts of protein engineering strategies to manipulate the flexible structure. Int J Biol Macromol, 2022, 214: 642-654

[14]

Wang K, Luo H, Tian J, Turunen O, Huang H, Shi P, Hua H, Wang C, Wang S, Yao B. Thermostability improvement of a Streptomyces xylanase by introducing proline and glutamic acid residues. Appl Environ Microbiol, 2014, 80: 2158-2165

[15]

Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol, 2019, 37: 420-423

[16]

Hao M-J, Wu D, Xu Y, Tao X-M, Li N, Yu X-W. A novel endo-polygalacturonase from Penicillium rolfsii with prebiotics production potential: cloning, characterization and application. Foods, 2022, 11: 3469

[17]

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 2018, 46: W296-W303

[18]

Craig DB, Dombkowski AA. Disulfide by design 2.0: a web-based tool for disulfide engineering in proteins. BMC Bioinformatics, 2013, 14: 1-7

[19]

Musil M, Stourac J, Bendl J, Brezovsky J, Prokop Z, Zendulka J, Martinek T, Bednar D, Damborsky J. FireProt: web server for automated design of thermostable proteins. Nucleic Acids Res, 2017, 45(W1W393-W399

[20]

Xiong P, Hu X, Huang B, Zhang J, Chen Q, Liu H. Increasing the efficiency and accuracy of the ABACUS protein sequence design method. Bioinformatics, 2020, 36: 136-144

[21]

Goldenzweig A, Goldsmith M, Hill SE, Gertman O, Laurino P, Ashani Y, Dym O, Unger T, Albeck S, Prilusky J. Automated structure-and sequence-based design of proteins for high bacterial expression and stability. Mol Cell, 2016, 63(2): 337-346

[22]

Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem, 2005, 26: 1701-1718

[23]

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1: 19-25

[24]

Xu H, Zhang P, Zhang Y, Liu Z, Zhang X, Li Z, Li J-J, Du Y. Overexpression and biochemical characterization of an endo-α-1, 4-polygalacturonase from Aspergillus nidulans in Pichia pastoris. Int J Mol Sci, 2020, 21(6): 2100

[25]

Tu T, Meng K, Bai Y, Shi P, Luo H, Wang Y, Yang P, Zhang Y, Zhang W, Yao B. High-yield production of a low-temperature-active polygalacturonase for papaya juice clarification. Food Chem, 2013, 141(32974-2981

[26]

Yuan P, Meng K, Huang H, Shi P, Luo H, Yang P, Yao B. A novel acidic and low-temperature-active endo-polygalacturonase from Penicillium sp. CGMCC 1669 with potential for application in apple juice clarification. Food Chem, 2011, 129: 1369-1375

[27]

Tu T, Bai Y, Luo H, Ma R, Wang Y, Shi P, Yang P, Meng K, Yao B. A novel bifunctional pectinase from Penicillium oxalicum SX6 with separate pectin methylesterase and polygalacturonase catalytic domains. Appl Microbiol Biotechnol, 2014, 98(11): 5019-5028

[28]

Tu T, Luo H, Meng K, Cheng Y, Ma R, Shi P, Huang H, Bai Y, Wang Y, Zhang L. Improvement in thermostability of an Achaetomium sp. strain Xz8 endopolygalacturonase via the optimization of charge-charge interactions. Appl Environ Microbiol, 2015, 81: 6938-6944

[29]

Liu M-Q, Dai X-J, Bai L-F, Xu X. Cloning, expression of Aspergillus niger JL-15 endo-polygalacturonase A gene in Pichia pastoris and oligo-galacturonates production. Protein Expr Purif, 2014, 94: 53-59

[30]

Carli S, Meleiro LP, Ward RJ. Biochemical and kinetic characterization of the recombinant GH28 Stereum purpureum endopolygalacturonase and its biotechnological application. Int J Biol Macromol, 2019, 137: 469-474

[31]

Li Y, Wang Y, Tu T, Zhang D, Ma R, You S, Wang X, Yao B, Luo H, Xu B. Two acidic, thermophilic GH28 polygalacturonases from Talaromyces leycettanus JCM 12802 with application potentials for grape juice clarification. Food Chem, 2017, 237: 997-1003

[32]

Zhu J, Long J, Li X, Lu C, Zhou X, Chen L, Qiu C, Jin Z. Improving the thermal stability and branching efficiency of Pyrococcus horikoshii OT3 glycogen branching enzyme. Int J Biol Macromol, 2024, 255: 128010

[33]

Zhou Z, Wang X. Rational design and structure-based engineering of alkaline pectate lyase from Paenibacillus sp. 0602 to improve thermostability. BMC Biotechnol, 2021, 21: 32

[34]

Lu B, Xian L, Zhu J, Wei Y, Yang C, Cheng Z. A novel endo-polygalacturonase from Penicillium oxalicum: gene cloning, heterologous expression and its use in acidic fruit juice extraction. J Microbiol Biotechnol, 2022, 32: 464

[35]

Zhang X, Chen F, He C, Fang W, Fang Z, Zhang X, Wang X, Xiao Y. Improving the thermostability of a GH97 dextran glucosidase by rational design. Biotechnol Lett, 2020, 42: 2211-2221

[36]

Li K, Meng K, Pan X, Ma R, Yang P, Huang H, Yao B, Su X. Two thermophilic fungal pectinases from Neosartorya fischeri P1: gene cloning, expression, and biochemical characterization. J Mol Catal B Enzym, 2015, 118: 70-78

[37]

Prandi B, Baldassarre S, Babbar N, Bancalari E, Vandezande P, Hermans D, Bruggeman G, Gatti M, Elst K, Sforza S. Pectin oligosaccharides from sugar beet pulp: molecular characterization and potential prebiotic activity. Food Funct, 2018, 9: 1557-1569

[38]

Babbar N, Dejonghe W, Gatti M, Sforza S, Elst K. Pectic oligosaccharides from agricultural by-products: production, characterization and health benefits. Crit Rev Biotechnol, 2016, 36(4): 594-606

Funding

National Key Research and Development Program of China(2022YFD2101201)

Innovative Research Group Project of the National Natural Science Foundation of China(32072162)

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

8

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/