Enhanced biosynthesis of 2’-Fucosyllactose in Escherichia coli through α-1,2-fucosyltransferase mining and pathway optimization

Wei Wei , Zehong Zhou , Tiantian Li , Heng Li , Jinsong Gong , Min Jiang , Zhenghong Xu , Jinsong Shi

Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) : 26

PDF
Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) :26 DOI: 10.1007/s43393-025-00399-4
Original Article
research-article

Enhanced biosynthesis of 2’-Fucosyllactose in Escherichia coli through α-1,2-fucosyltransferase mining and pathway optimization

Author information +
History +
PDF

Abstract

2’-Fucosyllactose (2’-FL), the most abundant human milk oligosaccharides (HMOs), plays crucial biological roles in regulation of intestinal microbiota, inhibition of pathogen adhesion, and immune enhancement. It holds considerable market potential in the pharmaceutical and food industries. Compared to chemical route, microbial synthesis using engineered strains, such as Escherichia coli, offers a more economical and efficient production route and currently represents the industrial standard for 2’-FL manufacturing. Notably, α-1,2-fucosyltransferase (FucT2) serves as the key rate-limiting enzyme in the 2’-FL biosynthetic pathway. Therefore, enhancing FucT2 activity is essential for improving 2’-FL titer. In this study, we explored and characterized an efficient FucT2 from Helicobacter himalayensis (H.him-FucT2), which demonstrated high catalytic activity in the synthesis of 2’-FL. Comparative analysis confirmed that H.him-FucT2 exhibits superior activity to FucT2 from Helicobacter pylori. Upon expression in an engineered Escherichia coli capable of de novo 2’-FL biosynthesis, the initial titer of 2’-FL reached 0.22 g/L. To further enhance the titer of 2’-FL, we adopted a dual-module bypass gene knockout strategy to redirect metabolic flux. Specifically, metabolic bypass genes (pfkA, pfkB, nudD, nudK, lacZ, and wcaJ) were systematically knocked out using the CRISPR/Cas9 system. Subsequently, through the composite application of global regulation and fermentation condition optimization, the titer of 2’-FL was further increased by 13.7 times, which reached 11.02 g/L with fed-batch fermentation.

Keywords

Human milk oligosaccharides / 2’-Fucosyllactose / α-1,2-fucosyltransferase / Escherichia coli

Cite this article

Download citation ▾
Wei Wei, Zehong Zhou, Tiantian Li, Heng Li, Jinsong Gong, Min Jiang, Zhenghong Xu, Jinsong Shi. Enhanced biosynthesis of 2’-Fucosyllactose in Escherichia coli through α-1,2-fucosyltransferase mining and pathway optimization. Systems Microbiology and Biomanufacturing, 2026, 6(1): 26 DOI:10.1007/s43393-025-00399-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cai R, Zheng Y, Lane J, Huang A, Hu R, Huang Q, Liu F, Zhang B. In vitro infant fecal fermentation metabolites of osteopontin and 2’-Fucosyllactose support intestinal barrier function. J Agric Food Chem, 2025, 73(2): 1642-55

[2]

Wu S, Chen H, Yu R, Li H, Zhao J, Stanton C, Paul Ross R, Chen W, Yang B. Human milk oligosaccharides 2’-fucosyllactose and 3-fucosyllactose attenuate ovalbumin-induced food allergy through immunoregulation and gut microbiota modulation. Food Funct, 2025, 16(4): 1267-83

[3]

Bagci Bosi AT, Eriksen KG, Sobko T, Wijnhoven TM, Breda J. Breastfeeding practices and policies in WHO European region member States. Public Health Nutr, 2016, 19(4): 753-64

[4]

Bych K, Mikš MH, Johanson T, Hederos MJ, Vigsnæs LK, Becker P. Production of HMOs using microbial hosts - from cell engineering to large scale production. Curr Opin Biotechnol, 2019, 56: 130-7

[5]

Huang D, Yang K, Liu J, Xu Y, Wang Y, Wang R, Liu B, Feng L. Metabolic engineering of Escherichia coli for the production of 2’-fucosyllactose and 3-fucosyllactose through modular pathway enhancement. Metab Eng, 2017, 41: 23-38

[6]

Sun X, Peng Z, Li C, Zheng Y, Cheng Y, Zong J, Lu F, Li Y, Li Q. Combinatorial metabolic engineering and tolerance evolving of Escherichia coli for high production of 2’-fucosyllactose. Bioresour Technol, 2023, 372: 128667

[7]

Tan Y, Zhang Y, Han Y, Liu H, Chen H, Ma F, Withers SG, Feng Y, Yang G. Directed evolution of an α1,3-fucosyltransferase using a single-cell ultrahigh-throughput screening method. Sci Adv, 2019, 5(10): eaaw8451

[8]

Chin YW, Kim JY, Kim JH, Jung SM, Seo JH. Improved production of 2’-fucosyllactose in engineered Escherichia coli by expressing putative α-1,2-fucosyltransferase, WcfB from bacteroides fragilis. J Biotechnol, 2017, 257: 192-8

[9]

Park BS, Choi YH, Kim MW, Park BG, Kim EJ, Kim JY, Kim JH, Kim BG. Enhancing biosynthesis of 2’-Fucosyllactose in Escherichia coli through engineering lactose Operon for lactose transport and α -1,2-Fucosyltransferase for solubility. Biotechnol Bioeng, 2022, 119(51264-77

[10]

Li C, Wu M, Gao X, Zhu Z, Li Y, Lu F, Qin HM. Efficient biosynthesis of 2’-Fucosyllactose using an in vitro multienzyme cascade. J Agric Food Chem, 2020, 68(39): 10763-71

[11]

Chin YW, Kim JY, Lee WH, Seo JH. Enhanced production of 2’-fucosyllactose in engineered Escherichia coli BL21star(DE3) by modulation of lactose metabolism and fucosyltransferase. J Biotechnol, 2015, 210: 107-15

[12]

Li W, Zhu YY, Wan L, Guang CE, Mu WM. Pathway optimization of 2′-Fucosyllactose production in engineered Escherichia coli. J Agric Food Chem, 2021, 69(5): 1567-77

[13]

Baskar G, Kumar MD, Prabu AA, Renganathan S, Yoo C. Optimization of carbon and nitrogen sources for L-asparaginase production by Enterobacter aerogenes using response surface methodology. Chem Biochem Eng Q, 2009, 23(3): 393-7

[14]

Zhu X, Gong J, Li H, Lu Z, Zhou Z, Shi J, Xu Z. Screening, identification and culture optimization of a newly isolated aromatic nitrilase-producing bacterium–Pseudomonas Putida CGMCC3830. Sheng Wu Gong Cheng Xue Bao, 2014, 30(3): 412-24

[15]

Drouillard S, Driguez H, Samain E. Large-scale synthesis of H-antigen oligosaccharides by expressing Helicobacter pylori alpha1,2-fucosyltransferase in metabolically engineered Escherichia coli cells. Angew Chem Int Ed Engl, 2006, 45(11): 1778-80

[16]

Niu S, Ma W, Jin M, Chen J, Li S, Zou X. Complete genome sequence of Kosakonia sp. Strain CCTCC M2018092, a Fucose-Rich exopolysaccharide producer. Microbiol Resour Announc. 2019;8(30). https://doi.org/10.1128/mra.00567-19.

[17]

Li X, Fatema N, Gan Q, Fan C. Functional consequences of lysine acetylation of phosphofructokinase isozymes. Febs J, 2025, 292(10): 2545-58

[18]

Ronimus RS, Morgan HW. The biochemical properties and phylogenies of phosphofructokinases from extremophiles. Extremophiles, 2001, 5(6): 357-73

[19]

Wang Y, San KY, Bennett GN. Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains. Appl Microbiol Biotechnol, 2013, 97(15): 6883-93

[20]

Liang S, He Z, Liu D, Yang S, Yan Q, Jiang Z. Efficient biosynthesis of difucosyllactose via de Novo GDP-l-Fucose pathway in metabolically engineered Escherichia coli. J Agric Food Chem, 2024, 72(8): 4367-75

[21]

Chang CY, Hu HT, Tsai CH, Wu WF. The degradation of RcsA by ClpYQ(HslUV) protease in Escherichia coli. Microbiol Res, 2016, 184: 42-50

[22]

Stout V, Torres-Cabassa A, Maurizi MR, Gutnick D, Gottesman S. RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J Bacteriol, 1991, 173(5): 1738-47

[23]

Chen Y, Zhu Y, Wang H, Chen R, Liu Y, Zhang W, Mu W. De Novo biosynthesis of 2’-fucosyllactose in a metabolically engineered Escherichia coli using a novel ɑ1,2-fucosyltransferase from azospirillum lipoferum. Bioresour Technol, 2023, 374: 128818

[24]

Liu W, Peng J, Zou S, Xu L, Cheng H, Wang Y, Chen Z, Zhou H. Regulation on pathway metabolic fluxes to enhance Colanic acid production in Escherichia coli. J Agric Food Chem, 2023, 71(37): 13857-68

[25]

Ebel W, Trempy JE. Escherichia coli RcsA, a positive activator of Colanic acid capsular polysaccharide synthesis, functions to activate its own expression. J Bacteriol, 1999, 181(2577-84

[26]

Kuo MS, Chen KP, Wu WF. Regulation of RcsA by the ClpYQ (HslUV) protease in Escherichia coli. Microbiol (Reading), 2004, 150(Pt 2): 437-46

[27]

Kennedy M, Krouse D. Strategies for improving fermentation medium performance: a review. J Ind Microbiol Biotechnol, 1999, 23(6): 456-75

[28]

Miyakoshi M. Multilayered regulation of amino acid metabolism in Escherichia coli. Curr Opin Microbiol, 2024, 77: 102406

[29]

Reitzer L. Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol, 2003, 57: 155-76

[30]

Switzer A, Brown DR, Wigneshweraraj S. New insights into the adaptive transcriptional response to nitrogen starvation in Escherichia coli. Biochem Soc Trans, 2018, 46: 1721-8

[31]

Zhou JY, Su XY, Wang YZ, Ding Q. Combinatorial engineering of microbial cell factory for 2′-fucosyllactose biosynthesis. Process Biochem, 2025, 156: 202-8

[32]

Gungormusler-Yilmaz M, Shamshurin D, Grigoryan M, Taillefer M, Spicer V, Krokhin OV, Sparling R, Levin DB. Reduced catabolic protein expression in clostridium Butyricum DSM 10702 correlate with reduced 1,3-propanediol synthesis at high glycerol loading. AMB Express, 2014, 4: 63

[33]

Li M, Zhang T, Li C, Gao W, Liu Z, Miao M. Semi-rationally designed site-saturation mutation of Helicobacter pylori α-1,2-fucosyltransferase for improved catalytic activity and thermostability. Int J Biol Macromol, 2024, 259(Pt 2129316

[34]

Stein DB, Lin Y-N, Lin C-H. Characterization of Helicobacter pylori α1,2-Fucosyltransferase for enzymatic synthesis of Tumor-Associated antigens. Adv Synth Catal, 2008, 350(14–152313-21

Funding

the National Key Research and Development Program of China(2021YFC2102000)

the Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX22_2376)

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/