Development of a CRISPR-Cpf1 and endogenous recombinase synergy platform for N-acetylglucosamine overproduction in Corynebacterium glutamicum S9114

Siqi Liu , Jiangong Lu , Wenwen Yu , Yanfeng Liu , Jianghua Li , Guocheng Du , Xueqin Lv , Long Liu

Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) : 8

PDF
Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) :8 DOI: 10.1007/s43393-025-00398-5
Original Article
research-article

Development of a CRISPR-Cpf1 and endogenous recombinase synergy platform for N-acetylglucosamine overproduction in Corynebacterium glutamicum S9114

Author information +
History +
PDF

Keywords

Corynebacterium glutamicum / Gene editing platform / Recombinase / CRISPR-Cpf1 / N-acetylglucosamine

Cite this article

Download citation ▾
Siqi Liu, Jiangong Lu, Wenwen Yu, Yanfeng Liu, Jianghua Li, Guocheng Du, Xueqin Lv, Long Liu. Development of a CRISPR-Cpf1 and endogenous recombinase synergy platform for N-acetylglucosamine overproduction in Corynebacterium glutamicum S9114. Systems Microbiology and Biomanufacturing, 2026, 6(1): 8 DOI:10.1007/s43393-025-00398-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ray D, Anand U, Jha K, Korzeniewska E, Bontempi E, Proćków J, Dey A. The soil bacterium, Corynebacterium glutamicum, from biosynthesis of value-added products to bioremediation: A master of many trades. Environ Res, 2022, 213: 113622

[2]

Chai M, Deng C, Chen Q, Lu W, Liu Y, Li J, Du G, Lv X, Liu L. Synthetic biology toolkits and metabolic engineering applied in Corynebacterium glutamicum for biomanufacturing. ACS Synth Biol, 2021, 10(12): 3237-50

[3]

Wolf S, Becker J, Tsuge Y, Kawaguchi H, Kondo A, Marienhagen J, Bott M, Wendisch VF, Wittmann C. Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being. Essays Biochem, 2021, 65(2197-212

[4]

Li J, Wang X, Xokat X, Wan Y, Gao X, Wang Y, Li C. Metabolic engineering of Corynebacterium glutamicum for producing different types of triterpenoids. ACS Synth Biol, 2025, 14(3): 819-32

[5]

Huang Y, Li H, Zhao G, Hu X, Wang X. Metabolic engineering of Corynebacterium glutamicum for L-alanine production. Syst Microbiol Biomanuf, 2024, 4(1): 1-15

[6]

Tsuge Y, Matsuzawa H. Recent progress in production of amino acid-derived chemicals using Corynebacterium glutamicum. World J Microbiol Biotechnol, 2021, 37(3): 49

[7]

Mindt M, Beyraghdar Kashkooli A, Suarez-Diez M, Ferrer L, Jilg T, Bosch D, Martins dos Santos VAP, Wendisch VF, Cankar K. Production of Indole by Corynebacterium glutamicum microbial cell factories for flavor and fragrance applications. Microb Cell Fact, 2022, 21(145

[8]

Lv Y, Wu Z, Han S, Lin Y, Zheng S. Genome sequence of Corynebacterium glutamicum S9114, a strain for industrial production of glutamate. J Bacteriol, 2011, 193(216096-7

[9]

Sheng Q, Wu Y, Xu X, Tan X, Li Z, Zhang B. Production of L-glutamate family amino acids in Corynebacterium glutamicum: physiological mechanism, genetic modulation, and prospects. Synth Syst Biotechnol, 2021, 6(4): 302-25

[10]

Deng C, Lv X, Liu Y, Li J, Lu W, Du G, Liu L. Metabolic engineering of Corynebacterium glutamicum S9114 based on whole-genome sequencing for efficient N-acetylglucosamine synthesis. Synth Syst Biotechnol, 2019, 4(3): 120-9

[11]

Su R, Wang T, Bo T, Cai N, Yuan M, Wu C, Jiang H, Peng H, Chen N, Li Y. Enhanced production of D-pantothenic acid in Corynebacterium glutamicum using an efficient CRISPR–Cpf1 genome editing method. Microb Cell Fact, 2023, 22(1): 3

[12]

Yang Y, Wei N, Zhang H, Wang M, Liu C, Zhang F, Gu F. Genome editing of Corynebacterium glutamicum mediated with Cpf1 plus Ku/LigD. Biotechnol Lett, 2021, 43(122273-81

[13]

Luo G, Zhao N, Jiang S, Zheng S. Application of RecET-Cre/loxP system in Corynebacterium glutamicum ATCC14067 for L-leucine production. Biotechnol Lett, 2021, 43(1): 297-306

[14]

Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 2013, 8(11): 2281-308

[15]

Zhang M, Shi Y, Zhang L, Zhu S, Yang H, Shen W, Xia Y, Chen X. A CRISPR–Cas12a system for multi-gene editing (CCMGE) and metabolic pathway assembly in Starmerella Bombicola. Syst Microbiol Biomanuf, 2022, 2(4): 665-75

[16]

Fitschen J, Newing P, Johnston PR, Bell EM, Tolun G. Half a century after their discovery: structural insights into exonuclease and annealase proteins catalyzing recombineering. Eng Microbiol, 2024, 4(1): 100120

[17]

Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, Sun B, Chen B, Xu X, Li Y, Wang R, Yang S. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun, 2017, 8(115179

[18]

Lu L, Shen X, Sun X, Yan Y, Wang J, Yuan Q. CRISPR-based metabolic engineering in non-model microorganisms. Curr Opin Biotechnol, 2022, 75: 102698

[19]

Chang Y, Wang Q, Su T, Qi Q. Identification of phage recombinase function unit in genus Corynebacterium. Appl Microbiol Biotechnol, 2021, 105(125067-75

[20]

Asin EC, Garcia LO, Bartholet T, Liang Z, Isaacs FJ, Martins PM. Metagenomics harvested genus-specific single-stranded DNA-annealing proteins improve and expand recombineering in Pseudomonas species. Nucleic Acids Res, 2023, 51(2212522-36

[21]

Steczkiewicz K, Prestel E, Bidnenko E, Szczepankowska AK. Expanding diversity of firmicutes single-strand annealing proteins: a putative role of bacteriophage-host arms race. Front Microbiol, 2021, 12: 644622

[22]

Nafissi N, Slavcev R. Bacteriophage recombination systems and biotechnical applications. Appl Microbiol Biotechnol, 2014, 98(7): 2841-51

[23]

Murphy KC. λ recombination and recombineering. EcoSal Plus. 2016;7(1). https://doi.org/10.1128/ecosalplus.ESP-0011-2015.

[24]

Iyer LM, Koonin EV, Aravind L. Classification and evolutionary history of the single-strand annealing proteins, RecT, Redβ, ERF and RAD52. BMC Genomics, 2002, 3(11-11

[25]

Wang J, Sarov M, Rientjes J, Fu J, Hollak H, Kranz H, Xie W, Stewart AF, Zhang Y. An improved recombineering approach by adding RecA to λ red recombination. Mol Biotechnol, 2006, 32(1): 43-53

[26]

Xue C, Greene EC. DNA repair pathway choices in CRISPR-Cas9-mediated genome editing. Trends Genet, 2021, 37(7): 639-56

[27]

Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair, 2006, 5(9–10): 1021-9

[28]

Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol, 2017, 18(8): 495-506

[29]

Castañeda-García A, Prieto AI, Rodríguez-Beltrán J, Alonso N, Cantillon D, Costas C, Pérez-Lago L, Zegeye ED, Herranz M, Plociński P, Tonjum T, García de Viedma D, Paget MSB, Waddell SJ, Rojas AM, Doherty AJ, Blázquez J. A non-canonical mismatch repair pathway in prokaryotes. Nat Commun, 2017, 8: 14246

[30]

Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015, 163(3): 759-71

[31]

Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene, 1994, 145(169-73

[32]

Nolden L, Farwick M, Krämer R, Burkovski A. Glutamine synthetases of Corynebacterium glutamicum: transcriptional control and regulation of activity. FEMS Microbiol Lett, 2001, 201(1): 91-8

[33]

Becker M, Börngen K, Nomura T, Battle AR, Marin K, Martinac B, Krämer R. Glutamate efflux mediated by Corynebacterium glutamicum MscCG, Escherichia coli MscS, and their derivatives. Biochim Biophys Acta Biomembr, 2013, 1828(4): 1230-40

[34]

Wang Y, Cao G, Xu D, Fan L, Wu X, Ni X, Zhao S, Zheng P, Sun J, Ma Y. A novel Corynebacterium glutamicum L-glutamate exporter. Appl Environ Microbiol, 2018, 84(6): e02691-17

[35]

Wang N, Ni Y, Shi F. Deletion of OdhA or Pyc improves production of γ-aminobutyric acid and its precursor L-glutamate in Recombinant Corynebacterium glutamicum. Biotechnol Lett, 2015, 37(7): 1473-81

Funding

National Key Research and Development Program of China(2023YFA0914500)

National Natural Science Foundation of China(32200050)

Key Technological Project of Jiangxi Province(20244AFH82001)

Fundamental Research Funds for the Central Universities(JUSRP202404017, JUSRP622004)

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/