Unlocking Streptomyces biosynthetic gene clusters: bioelicitors, co-culture, and beyond

Phu-Tho Nguyen , Lan-Phuong Ly , Minh-Tuan Le , Bao-Ngoc Vuong , Phuong-Loan Phan , Huu-Thanh Nguyen

Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) : 1

PDF
Systems Microbiology and Biomanufacturing ›› 2026, Vol. 6 ›› Issue (1) :1 DOI: 10.1007/s43393-025-00397-6
Review
review-article

Unlocking Streptomyces biosynthetic gene clusters: bioelicitors, co-culture, and beyond

Author information +
History +
PDF

Keywords

Bioelicitors / Co-culture / Biosynthetic gene cluster activation / Secondary metabolites / Streptomyces

Cite this article

Download citation ▾
Phu-Tho Nguyen, Lan-Phuong Ly, Minh-Tuan Le, Bao-Ngoc Vuong, Phuong-Loan Phan, Huu-Thanh Nguyen. Unlocking Streptomyces biosynthetic gene clusters: bioelicitors, co-culture, and beyond. Systems Microbiology and Biomanufacturing, 2026, 6(1): 1 DOI:10.1007/s43393-025-00397-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rodríguez M, Cuervo L, Prado-Alonso L, González-Moreno MS, Olano C, Méndez C. The role of Streptomyces to achieve the United Nations sustainable development goals: burning questions in searching for new compounds. Microb Biotechnol, 2024, 17(8 e14541

[2]

Alam K, Mazumder A, Sikdar S, Zhao Y-M, Hao J, Song C, Wang Y, Sarkar R, Islam S, Zhang Y, Li A. Streptomyces: the biofactory of secondary metabolites. Front Microbiol, 2022, 13 968053

[3]

Shepherdson E, Baglio C, Elliot M. Streptomyces behavior and competition in the natural environment. Curr Opin Microbiol, 2022, 71 102257

[4]

Donald L, Pipite A, Subramani R, Owen J, Keyzers RA, Taufa T. Streptomyces: still the biggest producer of new natural secondary metabolites, a current perspective. Microbiol Res, 2022, 13(3): 418-465

[5]

Singh TA, Passari AK, Jajoo A, Bhasin S, Gupta VK, Hashem A, Alqarawi AA, Abd-Allah EF. Tapping into actinobacterial genomes for natural product discovery. Front Microbiol, 2021, 12 655620

[6]

Mohite OS, Jørgensen TS, Booth TJ, Charusanti P, Phaneuf PV, Weber T, Palsson BO. Pangenome mining of the Streptomyces genus redefines species’ biosynthetic potential. Genome Biol, 2025, 26(1): 9

[7]

Cox G, Sieron A, King AM, De Pascale G, Pawlowski AC, Koteva K, Wright GD. A common platform for antibiotic dereplication and adjuvant discovery. Cell Chem Biol, 2017, 24(198-109

[8]

Walsh TR, Gales AC, Laxminarayan R, Dodd PC. Antimicrobial resistance: addressing a global threat to humanity. PLoS Med, 2023, 20(7 e1004264

[9]

Xuan W, Haiyun Z, Xiaozhuo C. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist, 2019, 2(2): 141-160

[10]

Khudhair I, Abbood N, El-Amier Y. Insecticide resistance in agricultural pests: mechanisms, case studies, and future directions. Univ Thi-Qar J Sci, 2025, 12 1381

[11]

Hoskisson P, Seipke R. Cryptic or silent? The known unknowns, unknown knowns, and unknown unknowns of secondary metabolism. MBio, 2020, 11 e02642-20

[12]

Meena SN, Wajs-Bonikowska A, Girawale S, Imran M, Poduval P, Kodam KM. High-throughput mining of novel compounds from known microbes: a boost to natural product screening. Molecules, 2024, 29(13): 3237

[13]

Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH, Parkinson EI, De Los Santos ELC, Yeong M, Cruz-Morales P, Abubucker S, et al.. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol, 2020, 16(160-68

[14]

Moore JM, Bradshaw E, Seipke RF, Hutchings MI, McArthur M. Use and discovery of chemical elicitors that stimulate biosynthetic gene clusters in Streptomyces bacteria. Methods Enzymol, 2012, 517: 367-385

[15]

Xu Z, Ji L, Tang W, Guo L, Gao C, Chen X, Liu J, Hu G, Liu L. Metabolic engineering of Streptomyces to enhance the synthesis of valuable natural products. Eng Microbiol, 2022, 2(2 100022

[16]

Okada BK, Seyedsayamdost MR. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol Rev, 2017, 41(1): 19-33

[17]

Mathew Valayil J. Activation of microbial silent gene clusters: genomics driven drug discovery approaches. Biochem Anal Biochem, 2016, 5(2 1000276

[18]

Liu Z, Zhao Y, Huang C, Luo Y. Recent advances in silent gene cluster activation in Streptomyces. Front Bioeng Biotechnol, 2021, 9 632230

[19]

Moore S, Lai H-E, Li J, Freemont P. Streptomyces cell-free systems for natural product discovery and engineering. Nat Prod Rep, 2022, 2: 228-236

[20]

Covington BC, Xu F, Seyedsayamdost MR. A natural product chemist's guide to unlocking silent biosynthetic gene clusters. Annu Rev Biochem, 2021, 90(1): 763-788

[21]

Tomm H, Ucciferri L, Ross A. Advances in microbial culturing conditions to activate silent biosynthetic gene clusters for novel metabolite production. J Ind Microbiol Biotechnol, 2019, 46(9-10): 1-20

[22]

Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy J, et al.. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell, 2014, 158(2): 412-421

[23]

Lin Z, Nielsen J, Liu Z. Bioprospecting through cloning of whole natural product biosynthetic gene clusters. Front Bioeng Biotechnol, 2020, 8: 526

[24]

Belknap KC, Park CJ, Barth BM, Andam CP. Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Sci Rep, 2020, 10(1): 2003

[25]

Zhang C, Straight PD. Antibiotic discovery through microbial interactions. Curr Opin Microbiol, 2019, 51: 64-71

[26]

Reen FJ, Romano S, Dobson ADW, Gara F. The sound of silence: activating silent biosynthetic gene clusters in marine microorganisms. Mar Drugs, 2015, 13(84754-4783

[27]

Wei J, He L, Niu G. Regulation of antibiotic biosynthesis in actinomycetes: perspectives and challenges. Synth Syst Biotechnol, 2018, 3(4): 229-235

[28]

Wang R, Mast Y, Wang J, Zhang W, Zhao G, Wohlleben W, Lu Y, Jiang W. Identification of two-component system AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor. Mol Microbiol, 2013, 87(1): 30-48

[29]

Yagüe P, Rodríguez-García A, López-García MT, Martín JF, Rioseras B, Sánchez J, Manteca A. Transcriptomic analysis of Streptomyces coelicolor differentiation in solid sporulating cultures: first compartmentalized and second multinucleated mycelia have different and distinctive transcriptomes. PLoS ONE, 2013, 8(3 e60665

[30]

Zhang X, Andres SN, Elliot MA. Interplay between nucleoid-associated proteins and transcription factors in controlling specialized metabolism in Streptomyces. MBio, 2021, 12(4 e01077–21

[31]

Laalami S, Zig L, Putzer H. Initiation of mRNA decay in bacteria. Cell Mol Life Sci, 2014, 71(10): 1799-1828

[32]

Quinn GA, Dyson PJ. Going to extremes: progress in exploring new environments for novel antibiotics. NPJ Antimicrob Resist, 2024, 2(1): 8

[33]

Craney A, Ahmed S, Nodwell J. Towards a new science of secondary metabolism. J Antibiot, 2013, 66(7387-400

[34]

Lee N, Kim W, Chung J, Lee Y, Cho S, Jang K-S, Kim SC, Palsson B, Cho B-K. Iron competition triggers antibiotic biosynthesis in Streptomyces coelicolor during co-culture with Myxococcus xanthus. ISME J, 2020, 14(5): 1111-1124

[35]

Martín JF, Liras P. The balance metabolism safety net: integration of stress signals by interacting transcriptional factors in Streptomyces and related actinobacteria. Front Microbiol, 2020, 10: 3120

[36]

Liu T, Gui X, Zhang G, Luo L, Zhao J. Streptomyces-fungus co-culture enhances the production of borrelidin and analogs: a genomic and metabolomic approach. Mar Drugs, 2024, 22(7 302

[37]

Hur JY, Jeong E, Kim YC, Lee SR. Strategies for natural product discovery by unlocking cryptic biosynthetic gene clusters in fungi. Separations, 2023, 10(6): 333

[38]

Kalkreuter E, Pan G, Cepeda AJ, Shen B. Targeting bacterial genomes for natural product discovery. Trends Pharmacol Sci, 2020, 41(113-26

[39]

Biermann F, Wenski SL, Helfrich EJN. Navigating and expanding the roadmap of natural product genome mining tools. Beilstein J Org Chem, 2022, 18: 1656-1671

[40]

Gathungu RM, Kautz R, Kristal BS, Bird SS, Vouros P. The integration of LC-MS and NMR for the analysis of low molecular weight trace analytes in complex matrices. Mass Spectrom Rev, 2020, 39(1–235-54

[41]

Nielsen JC, Nielsen J. Development of fungal cell factories for the production of secondary metabolites: linking genomics and metabolism. Synth Syst Biotechnol, 2017, 2(1): 5-12

[42]

Selegato DM, Castro-Gamboa I. Enhancing chemical and biological diversity by co-cultivation. Front Microbiol, 2023, 14: 1117559

[43]

Nah H-J, Pyeon H-R, Kang S-H, Choi S-S, Kim E-S. Cloning and heterologous expression of a large-sized natural product biosynthetic gene cluster in Streptomyces species. Front Microbiol, 2017, 8 394

[44]

Li L, MacIntyre LW, Brady SF. Refactoring biosynthetic gene clusters for heterologous production of microbial natural products. Curr Opin Biotechnol, 2021, 69: 145-152

[45]

Crnovcic I, Rückert-Reed C, Semsary S, Lang M, Kalinowski J, Keller U. Genetic interrelations in the actinomycin biosynthetic gene clusters of Streptomyces antibioticus IMRU 3720 and Streptomyces chrysomallus ATCC11523, producers of actinomycin X and actinomycin C. Adv Appl Bioinform Chem, 2017, 10: 29-46

[46]

Kjærbølling I, Mortensen UH, Vesth T, Andersen MR. Strategies to establish the link between biosynthetic gene clusters and secondary metabolites. Fungal Genet Biol, 2019, 130: 107-121

[47]

Takano E. γ-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol, 2006, 9(3): 287-294

[48]

Andrić S, Rigolet A, Argüelles Arias A, Steels S, Hoff G, Balleux G, Ongena L, Höfte M, Meyer T, Ongena M. Plant-associated Bacillus mobilizes its secondary metabolites upon perception of the siderophore pyochelin produced by a Pseudomonas competitor. ISME J, 2023, 17(2): 263-275

[49]

Correia-Melo C, Kamrad S, Tengölics R, Messner CB, Trebulle P, Townsend S, Jayasree Varma S, Freiwald A, Heineike BM, Campbell K, et al.. Cell–cell metabolite exchange creates a pro-survival metabolic environment that extends lifespan. Cell, 2023, 186(1): 63-79.e21

[50]

Boruta T. A bioprocess perspective on the production of secondary metabolites by Streptomyces in submerged co-cultures. World J Microbiol Biotechnol, 2021, 37(10): 171

[51]

Zhu S, Duan Y, Huang Y. The application of ribosome engineering to natural product discovery and yield improvement in Streptomyces. Antibiotics, 2019, 8(3133

[52]

Chen C, Blumentritt CA, Curtis MM, Sperandio V, Torres AG, Dudley EG. Restrictive streptomycin resistance mutations decrease the formation of attaching and effacing lesions in Escherichia coli O157:H7 strains. Antimicrob Agents Chemother, 2013, 57(94260-4266

[53]

Huang S, Aleksashin NA, Loveland AB, Klepacki D, Reier K, Kefi A, Szal T, Remme J, Jaeger L, Vázquez-Laslop N, et al.. Ribosome engineering reveals the importance of 5S rRNA autonomy for ribosome assembly. Nat Commun, 2020, 11(1): 2900

[54]

Strzałka A, Mikołajczyk J, Kowalska K, Skurczyński M, Holmes NA, Jakimowicz D. The role of two major nucleoid-associated proteins in Streptomyces, HupA and HupS, in stress survival and gene expression regulation. Microb Cell Fact, 2024, 23(1275

[55]

Pisciotta A, Manteca A, Alduina R. The SCO1731 methyltransferase modulates actinorhodin production and morphological differentiation of Streptomyces coelicolor A3(2). Sci Rep, 2018, 8(113686

[56]

Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkühler C. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res, 2007, 17(3195-211

[57]

Bind S, Bind S, Sharma AK, Chaturvedi P. Epigenetic modification: a key tool for secondary metabolite production in microorganisms. Front Microbiol, 2022, 13 784109

[58]

Williams R, Henrikson J, Hoover A, Lee A, Cichewicz R. Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem, 2008, 6: 1895-1897

[59]

Weber W, Schoenmakers R, Spielmann M, El-Baba MD, Folcher M, Keller B, Weber CC, Link N, van de Wetering P, Heinzen C, et al.. Streptomyces-derived quorum-sensing systems engineered for adjustable transgene expression in mammalian cells and mice. Nucleic Acids Res, 2003, 31(14 e71

[60]

Kong D, Wang X, Nie J, Niu G. Regulation of antibiotic production by signaling molecules in Streptomyces. Front Microbiol, 2019, 10: 2927

[61]

van Bergeijk DA, Elsayed SS, Du C, Santiago IN, Roseboom AM, Zhang L, Carrión VJ, Spaink HP, van Wezel GP. The ubiquitous catechol moiety elicits siderophore and angucycline production in Streptomyces. Commun Chem, 2022, 5(1): 14

[62]

Nguyen CT, Dhakal D, Pham VTT, Nguyen HT, Sohng J-K. Recent advances in strategies for activation and discovery/characterization of cryptic biosynthetic gene clusters in Streptomyces. Microorganisms, 2020, 8(4616

[63]

Ochi K. Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot, 2017, 70(125-40

[64]

Shaikh AA, Nothias L-F, Srivastava SK, Dorrestein PC, Tahlan K. Specialized metabolites from ribosome engineered strains of Streptomyces clavuligerus. Metabolites, 2021, 11(4239

[65]

Chung Y-M, El-Shazly M, Chuang D-W, Hwang T-L, Asai T, Oshima Y, Ashour M, Wu Y-C, Chang F-R. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, induces the production of anti-inflammatory cyclodepsipeptides from Beauveria felina. J Nat Prod, 2013, 76: 1444-1449

[66]

Jiang M, Chen S, Lu X, Guo H, Chen S, Yin X, Li H, Dai G, Liu L. Integrating genomics and metabolomics for the targeted discovery of new cyclopeptides with antifungal activity from a marine-derived fungus Beauveria felina. J Agric Food Chem, 2023, 71(259782-9795

[67]

Stratigopoulos G, Gandecha A, Cundliffe E. Regulation of tylosin production and morphological differentiation in Streptomyces fradiae by TylP, a deduced γ-butyrolactone receptor. Mol Microbiol, 2002, 45(3): 735-744

[68]

Alwali AY, Parkinson EI. Small molecule inducers of actinobacteria natural product biosynthesis. J Ind Microbiol Biotechnol, 2023, 50(1 kuad019

[69]

Lee SR, Gallant É, Seyedsayamdost MR. Discovery of cryptic natural products using high-throughput elicitor screening on agar media. Biochemistry, 2025, 64(1): 20-25

[70]

Hosaka T, Ohnishi-Kameyama M, Muramatsu H, Murakami K, Tsurumi Y, Kodani S, Yoshida M, Fujie A, Ochi K. Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol, 2009, 27(5): 462-464

[71]

Nepal KK, Wang G. Streptomycetes: surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnol Adv, 2019, 37(1): 1-20

[72]

Krespach MKC, Stroe MC, Netzker T, Rosin M, Zehner LM, Komor AJ, Beilmann JM, Krüger T, Scherlach K, Kniemeyer O, et al.. Streptomyces polyketides mediate bacteria–fungi interactions across soil environments. Nat Microbiol, 2023, 8(7): 1348-1361

[73]

Straight P, Kolter R. Interspecies chemical communication in bacterial development. Annu Rev Microbiol, 2009, 63: 99-118

[74]

Wang K, Liu N, Shang F, Huang J, Yan B, Liu M, Huang Y. Activation of secondary metabolism in red soil-derived Streptomycetes via co-culture with mycolic acid-containing bacteria. Microorganisms, 2021, 9(11): 2187

[75]

Li X, Xu H, Li Y, Liao S, Liu Y. Exploring diverse bioactive secondary metabolites from marine microorganisms using co-culture strategy. Molecules, 2023, 28(176371

[76]

Jones SE, Elliot MA. Streptomyces exploration: competition, volatile communication and new bacterial behaviours. Trends Microbiol, 2017, 25(7522-531

[77]

Jones SE, Ho L, Rees CA, Hill JE, Nodwell JR, Elliot MA. Streptomyces exploration is triggered by fungal interactions and volatile signals. Elife, 2017, 6 e21738

[78]

Vetsigian K, Jajoo R, Kishony R. Structure and evolution of Streptomyces interaction networks in soil and in silico. PLoS Biol, 2011, 9(10 e1001184

[79]

Traxler MF, Seyedsayamdost MR, Clardy J, Kolter R. Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol Microbiol, 2012, 86(3): 628-644

[80]

Abrudan MI, Smakman F, Grimbergen AJ, Westhoff S, Miller EL, van Wezel GP, Rozen DE. Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc Natl Acad Sci USA, 2015, 112(35): 11054-11059

[81]

Kim JH, Lee N, Hwang S, Kim W, Lee Y, Cho S, Palsson BO, Cho B-K. Discovery of novel secondary metabolites encoded in actinomycete genomes through co-culture. J Ind Microbiol Biotechnol, 2021, 48(3–4 kuaa001

[82]

Kurosawa K, Ghiviriga I, Sambandan TG, Lessard PA, Barbara JE, Rha C, Sinskey AJ. Rhodostreptomycins, antibiotics biosynthesized following horizontal gene transfer from Streptomyces padanus to Rhodococcus fascians. J Am Chem Soc, 2008, 130(4): 1126-1127

[83]

Nicault M, Zaiter A, Dumarcay S, Chaimbault P, Gelhaye E, Leblond P, Bontemps C. Elicitation of antimicrobial active compounds by Streptomyces–fungus co-cultures. Microorganisms, 2021, 9(1): 178

[84]

Sidda JD, Corre C. Gamma-butyrolactone and furan signaling systems in Streptomyces. Methods Enzymol, 2012, 517: 71-87

[85]

Onaka H, Mori Y, Igarashi Y, Furumai T. Mycolic acid–containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl Environ Microbiol, 2011, 77(2400-406

[86]

Barger SR, Hoefler BC, Cubillos-Ruiz A, Russell WK, Russell DH, Straight PD. Imaging secondary metabolism of Streptomyces sp. Mg1 during cellular lysis and colony degradation of competing Bacillus subtilis. Antonie Van Leeuwenhoek, 2012, 102(3): 435-445

[87]

Luti KJK, Mavituna F. Elicitation of Streptomyces coelicolor with Escherichia coli in a bioreactor enhances undecylprodigiosin production. Biochem Eng J, 2011, 53(3): 281-285

[88]

Galet J, Deveau A, Hôtel L, Leblond P, Frey-Klett P, Aigle B. Gluconic acid–producing Pseudomonas sp. prevent γ-actinorhodin biosynthesis by Streptomyces coelicolor A3(2). Arch Microbiol, 2014, 196(9): 619-627

[89]

Rateb ME, Ebel R, Jaspars M. Natural product diversity of actinobacteria in the Atacama Desert. Antonie Van Leeuwenhoek, 2018, 111(8): 1467-1477

[90]

Yu M, Li Y, Banakar SP, Liu L, Shao C, Li Z, Wang C. New metabolites from the co-culture of marine-derived actinomycete Streptomyces rochei MB037 and fungus Rhinocladiella similis 35. Front Microbiol, 2019, 10: 915

[91]

Ramesh P, Christopher G. Analysis of co-culture of Streptomyces sp. VITGV156 with four different bacteria for enhancing secondary metabolite production. Res J Biotechnol, 2024, 20: 173-182

[92]

Adnani N, Chevrette MG, Adibhatla SN, Zhang F, Yu Q, Braun DR, Nelson J, Simpkins SW, McDonald BR, Myers CL, et al.. Co-culture of marine invertebrate-associated bacteria and interdisciplinary technologies enable biosynthesis and discovery of a new antibiotic, keyicin. ACS Chem Biol, 2017, 12(12): 3093-3102

[93]

Kehe J, Kulesa A, Ortiz A, Ackerman CM, Thakku SG, Sellers D, Kuehn S, Gore J, Friedman J, Blainey PC. Massively parallel screening of synthetic microbial communities. Proc Natl Acad Sci USA, 2019, 116(26): 12804-12809

[94]

Temkin MI, Carlson CM, Stubbendieck AL, Currie CR, Stubbendieck RM. High-throughput co-culture assays for the investigation of microbial interactions. J Vis Exp, 2019, 152 e60275

[95]

Hamed AA, Ghareeb MA, Kelany AK, Abdelraof M, Kabary HA, Soliman NR, Elawady ME. Induction of antimicrobial and antioxidant metabolites by co-cultivation of two Red Sea sponge–associated Aspergillus sp. CO2 and Bacillus sp. COBZ21. BMC Biotechnol, 2024, 24(1 3

[96]

Marmann A, Aly AH, Lin W, Wang B, Proksch P. Co-cultivation—a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs, 2014, 12(2): 1043-1065

[97]

Schmitz DA, Wechsler T, Mignot I, Kümmerli R. Predicting bacterial interaction outcomes from monoculture growth and supernatant assays. ISME Commun, 2024, 4(1 ycae045

[98]

Goers L, Freemont P, Polizzi KM. Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface, 2014, 11(96): 20140065

[99]

Enfors SO, Jahic M, Rozkov A, Xu B, Hecker M, Jürgen B, Krüger E, Schweder T, Hamer G, O'Beirne D, Noisommit-Rizzi N, Reuss M, Boone L, Hewitt C, McFarlane C, Nienow A, Kovacs T, Trägårdh C, Fuchs L, Revstedt J, Friberg PC, Hjertager B, Blomsten G, Skogman H, Hjort S, Hoeks F, Lin H-Y, Neubauer P, van der Lans R, Luyben K, Vrabel P, Manelius Å. Physiological responses to mixing in large-scale bioreactors. J Biotechnol, 2001, 85(2175-185

[100]

Simon SA, Aschmann V, Behrendt A, Hügler M, Engl LM, Pohlner M, Rolfes S, Brinkhoff T, Engelen B, Könneke M, Rodriguez-R LM, Bornemann TLV, Nuy JK, Rothe L, Stach TL, Beblo-Vranesevic K, Leuko S, Runzheimer K, Möller R, Conrady M, Huth M, Trabold T, Herkendell K, Probst AJ. Earth's most needed uncultivated aquatic prokaryotes. Water Res, 2025, 273 122928

[101]

Xu F, Nazari B, Moon K, Bushin LB, Seyedsayamdost MR. Discovery of a cryptic antifungal compound from Streptomyces albus J1074 using high-throughput elicitor screens. J Am Chem Soc, 2017, 139(27): 9203-9212

[102]

Tyurin AP, Alferova VA, Korshun VA. Chemical elicitors of antibiotic biosynthesis in actinomycetes. Microorganisms, 2018, 6(2 52

[103]

Kapoore RV, Padmaperuma G, Maneein S, Vaidyanathan S. Co-culturing microbial consortia: approaches for applications in biomanufacturing and bioprocessing. Crit Rev Biotechnol, 2022, 42(1): 46-72

[104]

Li Y, Gong N, Zhou L, Yang Z, Zhang H, Gu Y, Ma J, Ju J. OSMAC-based discovery and biosynthetic gene clusters analysis of secondary metabolites from marine-derived Streptomyces globisporus SCSIO LCY30. Mar Drugs, 2024, 22(1 21

[105]

Bode HB, Bethe B, Höfs R, Zeeck A. Big effects from small changes: possible ways to explore nature's chemical diversity. ChemBioChem, 2002, 3(7): 619-627

[106]

Yook G, Nam J, Jo Y, Yoon H, Yang D. Metabolic engineering approaches for the biosynthesis of antibiotics. Microb Cell Fact, 2025

[107]

Arora D, Gupta P, Jaglan S, Roullier C, Grovel O, Bertrand S. Expanding the chemical diversity through microorganisms co-culture: current status and outlook. Biotechnol Adv, 2020, 40 107521

[108]

Tan ZQ, Leow HY, Lee DCW, Karisnan K, Song AAL, Mai CW, Yap WS, Lim SHE, Lai KS. Co-culture systems for the production of secondary metabolites: current and future prospects. Open Biotechnol J, 2019, 13(1): 18-26

[109]

Xu F, Wu Y, Zhang C, Davis KM, Moon K, Bushin LB, Seyedsayamdost MR. A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nat Chem Biol, 2019, 15(2): 161-168

[110]

Xia J, Wang G, Fan M, Chen M, Wang Z, Zhuang Y. Understanding the scale-up of fermentation processes from the viewpoint of the flow field in bioreactors and the physiological response of strains. Chin J Chem Eng, 2021, 30: 178-184

[111]

Nadal-Rey G, McClure DD, Kavanagh JM, Cornelissen S, Fletcher DF, Gernaey KV. Understanding gradients in industrial bioreactors. Biotechnol Adv, 2021, 46 107660

[112]

Gerzon G, Sheng Y, Kirkitadze M. Process analytical technologies – advances in bioprocess integration and future perspectives. J Pharm Biomed Anal, 2022, 207 114379

[113]

Duncker KE, Holmes ZA, You L. Engineered microbial consortia: strategies and applications. Microb Cell Fact, 2021, 20(1): 211

[114]

Dambruin NA, Pronk JT, Klijn ME. Application of process analytical technology for real-time monitoring of synthetic co-culture bioprocesses. Anal Bioanal Chem, 2025, 417(255611-5625

[115]

Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, Fetter A, Terlouw BR, Metcalf WW, Helfrich EJN, et al.. AntiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res, 2023, 51(W1): W46-W50

[116]

Trejo-Alarcon LM, Cano-Prieto C, de Calheiros Carvalho A, Rago D, Ahonen L, Cruz-Morales P, Licona-Cassani C. Integrative metabolo-genomics suggests a biosynthetic pathway for tetrangulol in Streptomyces sp. KL110A. World J Microbiol Biotechnol, 2025, 41(3 101

[117]

Louwen Joris JR, van der Hooft Justin JJ. Comprehensive large-scale integrative analysis of omics data to accelerate specialized metabolite discovery. mSystems, 2021, 6(4 e00726-21

[118]

Roychowdhury R, Das SP, Gupta A, Parihar P, Chandrasekhar K, Sarker U, Kumar A, Ramrao DP, Sudhakar C. Multi-omics pipeline and omics-integration approach to decipher plant’s abiotic stress tolerance responses. Genes, 2023, 14(6): 1281

[119]

Paulus C, Rebets Y, Tokovenko B, Nadmid S, Terekhova LP, Myronovskyi M, Zotchev SB, Rückert C, Braig S, Zahler S, et al.. New natural products identified by combined genomics–metabolomics profiling of marine Streptomyces sp. MP131-18. Sci Rep, 2017, 7(1 42382

[120]

Liu T, Huang Z, Gui X, Xiang W, Jin Y, Chen J, Zhao J. Multi-omics comparative analysis of Streptomyces mutants obtained by iterative atmosphere and room-temperature plasma mutagenesis. Front Microbiol, 2021, 11 630309

[121]

Ren H, Wang B, Zhao H. Breaking the silence: new strategies for discovering novel natural products. Curr Opin Biotechnol, 2017, 48: 21-27

[122]

Zhou Q, Zhao Y, Ke C, Wang H, Gao S, Li H, Zhang Y, Ye Y, Luo Y. Repurposing endogenous type I-E CRISPR-Cas systems for natural product discovery in Streptomyces. Nat Commun, 2024, 15(19833

[123]

Gu B, Kim DG, Kim D-K, Kim M, Kim HU, Oh M-K. Heterologous overproduction of oviedomycin by refactoring biosynthetic gene cluster and metabolic engineering of host strain Streptomyces coelicolor. Microb Cell Fact, 2023, 22(1212

[124]

Ameruoso A, Villegas Kcam MC, Cohen KP, Chappell J. Activating natural product synthesis using CRISPR interference and activation systems in Streptomyces. Nucleic Acids Res, 2022, 50(137751-7760

[125]

Call SN, Andrews LB. CRISPR-based approaches for gene regulation in non-model bacteria. Front Genome Ed, 2022, 4 892304

[126]

Horbal L, Siegl T, Luzhetskyy A. A set of synthetic versatile genetic control elements for the efficient expression of genes in Actinobacteria. Sci Rep, 2018, 8(1): 491

[127]

Myronovskyi M, Rosenkränzer B, Nadmid S, Pujic P, Normand P, Luzhetskyy A. Generation of a cluster-free Streptomyces albus chassis strain for improved heterologous expression of secondary metabolite clusters. Metab Eng, 2018, 49: 316-324

[128]

Gao C, Hindra N, Mulder D, Yin C, Elliot MA. Crp is a global regulator of antibiotic production in Streptomyces. MBio, 2012, 3(610-128

[129]

Krause J, Handayani I, Blin K, Kulik A, Mast Y. Disclosing the potential of the SARP-type regulator PapR2 for the activation of antibiotic gene clusters in streptomycetes. Front Microbiol, 2020, 11: 225

[130]

Li J, Wang K, Luo S, Tian Y, Li Y, Hu S, Tan H, Zhang J, Li J. Co-expression of a pair of interdependent regulator genes ovmZ and ovmW awakens the production of angucyclinone antibiotics in Streptomyces neyagawaensis. Microb Cell Fact, 2024, 23(1): 202

[131]

Koshla O, Yushchuk O, Ostash I, Dacyuk Y, Myronovskyi M, Jäger G, Süssmuth RD, Luzhetskyy A, Byström A, Kirsebom LA, Ostash B. Gene miaA for post-transcriptional modification of tRNAXXA is important for morphological and metabolic differentiation in Streptomyces. Mol Microbiol, 2019, 112(1249-265

[132]

Kim W, Hwang S, Lee N, Lee Y, Cho S, Palsson B, Cho B-K. Transcriptome and translatome profiles of Streptomyces species in different growth phases. Sci Data, 2020, 7(1138

[133]

Fang J-L, Gao W-L, Xu W-F, Lyu Z-Y, Ma L, Luo S, Chen X-A, Mao X-M, Li Y-Q. m4C DNA methylation regulates biosynthesis of daptomycin in Streptomyces roseosporus L30. Synth Syst Biotechnol, 2022, 7(41013-1023

[134]

McMahon MD, Guan C, Handelsman J, Thomas MG. Metagenomic analysis of Streptomyces lividans reveals host-dependent functional expression. Appl Environ Microbiol, 2012, 78(10): 3622-3629

[135]

Rebets Y, Kormanec J, Luzhetskyy A, Bernaerts K, Anné J. Streit W, Daniel R. Cloning and expression of metagenomic DNA in Streptomyces lividans and subsequent fermentation for optimized production. Metagenomics, 2016, New York, Humana Press99144

[136]

Charlop-Powers Z, Owen JG, Reddy BVB, Ternei MA, Brady SF. Chemical–biogeographic survey of secondary metabolism in soil. Proc Natl Acad Sci USA, 2014, 111(10): 3757-3762

[137]

Bilen M, Dufour J-C, Lagier J-C, Cadoret F, Daoud Z, Dubourg G, Raoult D. The contribution of culturomics to the repertoire of isolated human bacterial and archaeal species. Microbiome, 2018, 6(1): 94

[138]

Hulst MB, Zhang L, van der Heul HU, Du C, Elsayed SS, Koroleva A, Grocholski T, Wander DPA, Metsä-Ketelä M, Neefjes JJC, van Wezel GP. Metabolic engineering of Streptomyces peucetius for biosynthesis of N,N-dimethylated anthracyclines. Front Bioeng Biotechnol, 2024, 12 1363803

[139]

Li C-Y, Li H-T, Shao Y-T, Guo X-Y, Li W, Yin T-P. Regulation of secondary metabolites in the endophytic fungus Penicillium sp. KMU18029 by the chemical epigenetic modifier 5-azacitidine. Nat Prod Res, 2024, 38(4581-588

[140]

Pillay LC, Nekati L, Makhwitine PJ, Ndlovu SI. Epigenetic activation of silent biosynthetic gene clusters in endophytic fungi using small molecular modifiers. Front Microbiol, 2022, 13 815008

[141]

Du L, King J, Cichewicz R. Chlorinated polyketide obtained from a Daldinia sp. treated with the epigenetic modifier suberoylanilide hydroxamic acid. J Nat Prod, 2014

[142]

Schniete JK, Fernández-Martínez LT. Natural product discovery in soil actinomycetes: unlocking their potential within an ecological context. Curr Opin Microbiol, 2024, 79 102487

[143]

Mohammadipanah F, Kermani F, Salimi F. Awakening the secondary metabolite pathways of Promicromonospora kermanensis using physicochemical and biological elicitors. Appl Biochem Biotechnol, 2020, 192(4): 1224-1237

[144]

Wu C, Zacchetti B, Ram AFJ, van Wezel GP, Claessen D, Choi YH. Expanding the chemical space for natural products by Aspergillus–Streptomyces co-cultivation and biotransformation. Sci Rep, 2015, 5(1 10868

[145]

Yanagisawa K, Kaneko K, Ikeda H, Iwata S, Muranaka A, Koshino H, Nagao N, Watari S, Nishimura S, Shinzato N, et al.. A new pyranonaphthoquinone, actinoquinonal A, and its congeners from the combined culture of Streptomyces sp. 23–50 and Tsukamurella pulmonis TP-B0596. J Antibiot, 2025, 78(6): 350-358

[146]

Jiang Y, Matsumoto T, Kuranaga T, Lu S, Wang W, Onaka H, Kakeya H. Longicatenamides A–D, two diastereomeric pairs of cyclic hexapeptides produced by combined culture of Streptomyces sp. KUSC_F05 and Tsukamurella pulmonis TP-B0596. J Antibiot, 2021, 74(5): 307-316

[147]

Asamizu S, Pramana AAC, Kawai S-J, Arakawa Y, Onaka H. Comparative metabolomics reveals a bifunctional antibacterial conjugate from combined culture of Streptomyces hygroscopicus HOK021 and Tsukamurella pulmonis TP-B0596. ACS Chem Biol, 2022, 17(9): 2664-2672

[148]

Kawai S-J, Asamizu S, Suzuki H, Onaka H, Arakawa Y, Kimura K, Ojika M. Griseolutein T from Streptomyces seoulensis, newly identified via combined culture with Tsukamurella pulmonis, as an efficacious therapeutic agent against multidrug-resistant bacteria. J Antibiot, 2025, 78(9): 542-551

Funding

The Fundamental Research Program of Vietnam National University Ho Chi Minh City (VNU-HCM)(The Fundamental Research Program of Vietnam National University Ho Chi Minh City (VNU-HCM))

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

8

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/