Beyond methanogenesis: Methanosarcina mazei in biotechnology and biomedical research

S. Saranya , S. Dhayanithi , L. Thamanna , L. Lourdu Lincy , M. Surulinathi , P. Chellapandi

Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (4) : 1430 -1453.

PDF
Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (4) : 1430 -1453. DOI: 10.1007/s43393-025-00383-y
Review
review-article

Beyond methanogenesis: Methanosarcina mazei in biotechnology and biomedical research

Author information +
History +
PDF

Abstract

Methanosarcina mazei is a metabolically versatile methanogenic archaeon that extends far beyond its classical role in methane production. Recent advances in genomics, proteomics, and systems biology have revealed a rich repertoire of unique genetic, enzymatic, and regulatory elements that make M. mazei a powerful chassis for biotechnological and biomedical applications. With a genome of ~ 4.1 Mbp and exceptional substrate flexibility, including acetate, methanol, methylamines, and H2/CO2, M. mazei demonstrates superior tolerance to salinity, ammonia, and organic acids, enabling its dominance in stressed anaerobic ecosystems. Emerging genetic engineering tools, including CRISPR-Cas systems, inducible promoters, and codon expansion via pyrrolysyl-tRNA synthetases, have opened new avenues for metabolic engineering, enzyme design, and synthetic biology. Notably, M. mazei supports sustainable bioplastic production, heavy metal bioremediation, and degradation of toxic pollutants under anoxic conditions. In biomedicine, its orthogonal translation system enables the precise incorporation of non-canonical amino acids, supporting applications in protein labeling, prodrug design and DNA repair. Furthermore, their involvement in the human microbiome, particularly in gut disorders and colorectal cancer, has sparked interest in their diagnostic and therapeutic potentials. This review summarizes the current knowledge of its unique biological features, engineered toolkits, and translational applications, establishing it as a next-generation model organism for systems biotechnology and archaeal synthetic biology.

Keywords

Methanosarcina mazei / Synthetic biology / Pyrrolysine / Bioplastics / Genetic engineering / Human diseases

Cite this article

Download citation ▾
S. Saranya, S. Dhayanithi, L. Thamanna, L. Lourdu Lincy, M. Surulinathi, P. Chellapandi. Beyond methanogenesis: Methanosarcina mazei in biotechnology and biomedical research. Systems Microbiology and Biomanufacturing, 2025, 5(4): 1430-1453 DOI:10.1007/s43393-025-00383-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abubakar ZA, Mohammed HS, Ambi AA, Magaji MG. Pharmacognostic studies on the leaf of Basilicum polystachyon Linn Moench. Niger J Pharm Sci, 2023, 22: 45-59

[2]

Alsafadi D, Al-Mashaqbeh O, Mansour A, Alsaad M. Optimization of nitrogen source supply for enhanced biosynthesis and quality of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by extremely halophilic archaeon Haloferax mediterranei. Microbiologyopen, 2020, 9: e1055.

[3]

Alsafadi D, Al-Mashaqbeh O. A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. N Biotechnol, 2017, 34: 47-53.

[4]

Antoniewicz MR. Synthetic methylotrophy: Strategies to assimilate methanol for growth and chemicals production. Curr Opin Biotechnol, 2019, 59: 165-174.

[5]

Barret M, Gagnon N, Morissette B, Kalmokoff ML, Topp E, Brooks SP, Matias F, Neufeld JD, Talbot G. Phylogenetic identification of methanogens assimilating acetate-derived carbon in dairy and swine manures. Syst Appl Microbiol, 2015, 38: 56-66.

[6]

Battumur U, Yoon Y, Bae GS, Kim CH. Isolation and characterization of new Methanosarcina mazei strains KOR-3,-4,-5, and -6 from an anaerobic digester using pig slurry. Asian-Australas J Anim Sci, 2017, 6: 1198.

[7]

Ben Abdallah M, Karray F, Sayadi S. Production of polyhydroxyalkanoates by two halophilic archaeal isolates from Chott El Jerid using inexpensive carbon sources. Biomolecules, 2020, 10: 109.

[8]

Beránek V, Willis JCW, Chin JW. An evolved Methanomethylophilus alvus pyrrolysyl-tRNA synthetase/tRNA pair is highly active and orthogonal in mammalian cells. Biochemistry, 2019, 58: 387-390.

[9]

Beraud-Martínez LK, Betancourt-Lozano M, Gómez-Gil B, Asaff-Torres A, Monroy-Hermosillo OA, Franco-Nava . Methylotrophic methanogenesis induced by ammonia nitrogen in an anaerobic digestion system. Anaerobe, 2024, 88: 102877.

[10]

Bharathi M, Chellapandi P. Phylogenomic proximity and metabolic discrepancy of Methanosarcina mazei Go1 across methanosarcinal genomes. Biosystems, 2017, 155: 20-28.

[11]

Bhattacharjee R, Lemke EA. Potential vs challenges of expanding the protein universe with genetic code expansion in eukaryotic cells. J Mol Biol, 2024, 436: 168807.

[12]

Bizukojc M, Dietz D, Sun J, Zeng AP. Metabolic modelling of syntrophic-like growth of a 1,3-propanediol producer, Clostridium butyricum, and a methanogenic archaeon, Methanosarcina mazei, under anaerobic conditions. Bioproc Biosyst Eng, 2010, 33: 507-523.

[13]

Cai Y, Chen X, Lu T, Fang X, Ding M, Yu Z, Hu S, Liu J, Zhou X, Wang X. Activation of STING by SAMHD1 deficiency promotes PANoptosis and enhances efficacy of PD-L1 blockade in diffuse large B-cell lymphoma. Int J Biol Sci, 2023, 19: 4627-4643.

[14]

Cannistraro VJ, Pondugula S, Song Q, Taylor JS. Rapid deamination of cyclobutane pyrimidine dimer photoproducts at TCG sites in a translationally and rotationally positioned nucleosome in vivo. J Biol Chem, 2015, 290(44): 26597-26609.

[15]

Cao X, Yan L, Yang C, Wang L, Zhang M, Zhong D. Dynamics of DNA repair by class-II photolyases via a unified electron-transfer bifurcating mechanism. J Am Chem Soc, 2025, 147: 11291-11300.

[16]

Chellapandi P, Ranjani J. Knowledge-based discovery for designing CRISPR-CAS systems against invading mobilomes in thermophiles. Syst Synth Biol, 2015, 9: 97-106.

[17]

Chellapandi P, Saranya S. Biogas starter from genome-scale data for methanogenic bioprocessing of protein waste. Syst Microbiol Biomanuf, 2024, 4: 542-563.

[18]

Chellapandi P. In silico description of cobalt and nickel assimilation systems in the genomes of methanogens. Syst Synth Biol, 2011, 5: 105-114.

[19]

Chen S, Cui YW, Huang MQ. Coupling magnetic field and salinity upshock to improve polyhydroxyalkanoate productivity by Haloferax mediterranei feeding on molasses wastewater. Appl Environ Microbiol, 2022, 88: e0030522.

[20]

Cho CC, Blankenship LR, Ma X, Xu S, Liu W. The pyrrolysyl-tRNA synthetase activity can be improved by a P188 mutation that stabilizes the full-length enzyme. J Mol Biol, 2022, 434: 167453.

[21]

Cho CD, Leeuwon WM, Liu WR. Directed evolution of Candidatus Methanomethylophilus alvus pyrrolysyl-tRNA synthetase for the genetic incorporation of two different noncanonical amino acids in one protein. ACS Bio Med Chem Au, 2024, 4: 233-241.

[22]

Cisek AA, Szymańska E, Aleksandrzak-Piekarczyk T, Cukrowska B. The role of methanogenic archaea in inflammatory bowel disease—A review. J Pers Med, 2024, 14: 196.

[23]

Cisek AA, Szymańska E, Wierzbicka-Rucińska A, Aleksandrzak-Piekarczyk T, Cukrowska B. Methanogenic archaea in the pediatric inflammatory bowel disease in relation to disease type and activity. Int J Mol Sci, 2024, 25: 673.

[24]

Conway de Macario E, Guerrini M, Dugan CB, Macario AJ. Integration of foreign DNA in an intergenic region of the archaeon Methanosarcina mazei without effect on transcription of adjacent genes. J Mol Biol, 1996, 262(1): 12-20.

[25]

Costa KC, Whitman WB. Model organisms to study methanogenesis, a uniquely archaeal metabolism. J Bacteriol, 2023, 205: e00115-e123.

[26]

Daulatzai MA. Chronic functional bowel syndrome enhances gut-brain axis dysfunction, neuroinflammation, cognitive impairment, and vulnerability to dementia. Neurochem Res, 2014, 39: 624-644.

[27]

De Vrieze J, Hennebel T, Boon N, Verstraete W. Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour Technol, 2012, 112: 1-9.

[28]

Del Prete S, De Luca V, Vullo D, Scozzafava A, Carginale V, Supuran CT, Capasso C. Biochemical characterization of the γ-carbonic anhydrase from the oral pathogen Porphyromonas gingivalis, PgiCA. J Enzyme Inhib Med Chem, 2014, 29: 532-537.

[29]

Del Prete S, Vullo D, De Luca V, Carginale V, Scozzafava A, Supuran CT, Capasso C. A highly catalytically active γ-carbonic anhydrase from the pathogenic anaerobe Porphyromonas gingivalis and its inhibition profile with anions and small molecules. Bioorg Med Chem Lett, 2013, 23: 4067-4071.

[30]

Deppenmeier U, Lienard T, Gottschalk G. Novel reactions involved in energy conservation by methanogenic archaea. FEBS Lett, 1999, 457(3): 291-297.

[31]

Deshevaya EA, Fialkina SV, Shubralova EV, Tsygankov OS, Khamidullina NM, Vasilyak LM, Pecherkin VY, Shcherbakova VA, Nosovsky AM, Orlov OI. Survival of microorganisms during two-year exposure in outer space near the ISS. Sci Rep, 2024, 14: 334.

[32]

Deshmukh J, Pofahl R, Haase I. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis. Cell Death Dis, 2017, 8: e2664.

[33]

Dhamad AE, Lessner DJ. A CRISPRi-dCas9 system for archaea and its use to examine gene function during nitrogen fixation by Methanosarcina acetivorans. Appl Environ Microbiol, 2020, 86(21): e01402-e1420.

[34]

Djemai K, Drancourt M, Tidjani AM. Bacteria and methanogens in the human microbiome: a review of syntrophic interactions. Microb Ecol, 2022, 83: 536-554.

[35]

Dunkelmann DL, Chin JW. Engineering pyrrolysine systems for genetic code expansion and reprogramming. Chem Rev, 2024, 124: 11008-11062.

[36]

El-Sayed MT, Abdelhamid M, Mahmoud SS. et al.. Enhanced antitumor activity of 5-FU combined with L-methioninase against human colon cancer cells. Biomed Pharmacother, 2023, 158: 114178

[37]

Essen LO, Klar T. Light-driven DNA repair by photolyases. Cell Mol Life Sci, 2006, 63: 1266-1277.

[38]

Fast AG, Schmidt ED, Jones SW, Tracy BP. Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemicals production. Curr Opin Biotechnol, 2015, 33: 60-72.

[39]

Fernando E, Nielsen PH, Nielsen JL. Fluorescently probing anaerobic digester sludge: measuring single-cell anabolic activity in methanogens (Methanosarcina and Methanothermobacter) with deuterium-labeled Raman analysis. Spectrochim Acta A Mol Biomol Spectrosc, 2025, 326: 125231.

[40]

Francoleon DR, Boontheung P, Yang Y, Kin U, Ytterberg AJ, Denny PA, Denny PC, Loo JA, Gunsalus RP, Loo RR. S-layer, surface-accessible, and concanavalin A binding proteins of Methanosarcina acetivorans and Methanosarcina mazei. J Proteome Res, 2009, 8: 1972-1982.

[41]

Gaci N, Borrel G, Tottey W, O’Toole PW, Brugère JF. Archaea and the human gut: new beginning of an old story. World J Gastroenterol, 2014, 20: 16062-16078.

[42]

Garcia SL, Jangid K, Whitman WB, Das KC. Transition of microbial communities during the adaptation to anaerobic digestion of carrot waste. Bioresour Technol, 2011, 102: 7249-7256.

[43]

Gaston MA, Jiang R, Krzycki JA. Functional context, biosynthesis, and genetic encoding of pyrrolysine. Curr Opin Microbiol, 2011, 14: 342-349.

[44]

Georg J, Schomacher L, Chong JP, Majerník AI, Raabe M, Urlaub H, Müller S, Ciirdaeva E, Kramer W, Fritz HJ. The Methanothermobacter thermautotrophicus ExoIII homologue Mth212 is a DNA uridine endonuclease. Nucleic Acids Res, 2006, 34: 5325-5336.

[45]

Ghosh S, Gnaim R, Greiserman S, Fadeev L, Gozin M, Golberg A. Macroalgal biomass subcritical hydrolysates for the production of polyhydroxyalkanoate (PHA) by Haloferax mediterranei. Bioresour Technol, 2019, 271: 166-173.

[46]

Gottfried-Lee I, Perona JJ, Karplus PA, Mehl RA, Cooley RB. Structures of Methanomethylophilus alvus pyrrolysine tRNA-synthetases support the need for de novo selections when altering the substrate specificity. ACS Chem Biol, 2022, 17: 3470-3477.

[47]

Gou D, Liu R, Shan X, Deng H, Chen C, Xiang J, Liu Y, Gao Q, Li Z, Huang A, Wang K, Tang N. Gluconeogenic enzyme PCK1 supports S-adenosylmethionine biosynthesis and promotes H3K9me3 modification to suppress hepatocellular carcinoma progression. J Clin Invest, 2023, 133: e161713.

[48]

Guevara T, Rodriguez-Banqueri A, Ksiazek M, Potempa J, Gomis-Rüth FX. Structure-based mechanism of cysteine-switch latency and of catalysis by pappalysin-family metallopeptidases. IUCrJ, 2020, 7: 18-29.

[49]

Guo C, Lu Y. Cometabolism of ferrihydrite reduction and methyl-dismutating methanogenesis by Methanosarcina mazei. Appl Environ Microbiol, 2025, 91: e0223824.

[50]

Guo J, Buettner R, Du L, Li Z, Liu W, Su R, Chen Z, Che Y, Zhang Y, Ma R, Nguyen LXT, Moore RE, Khyatiben P, Chen MH, Patrick P, Wu X, Marcucci G, Wang L, Horne D, Chen J, Yang Y, Rosen ST. 8-Cl-Ado and 8-NH2-Ado synergize with venetoclax to target the methionine-MAT2A-SAM axis in acute myeloid leukemia. Leukemia, 2024, 38: 1236-1245.

[51]

Guo LT, Amikura K, Jiang HK, Mukai T, Fu X, Wang YS, O'Donoghue P, Söll D, Tharp JM. Ancestral archaea expanded the genetic code with pyrrolysine. J Biol Chem, 2022, 298: 102521.

[52]

Gupta D, Shalvarjian KE, Nayak DD. An Archaea-specific c-type cytochrome maturation machinery is crucial for methanogenesis in Methanosarcina acetivorans. Elife, 2022, 11: e76970.

[53]

Gupta RS, Singh B. Cloning of the HSP70 gene from Halobacterium marismortui: relatedness of archaebacterial HSP70 to its eubacterial homologs and a model for the evolution of the HSP70 gene. J Bacteriol, 1992, 174: 4594-4605.

[54]

Guss AM, Rother M, Zhang JK, Kulkarni G, Metcalf WW. New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species. Archaea, 2008, 2: 193-203.

[55]

Gutt M, Jordan B, Weidenbach K, Gudzuhn M, Kiessling C, Cassidy L, Schmitz RA. High complexity of glutamine synthetase regulation in Methanosarcina mazei: small protein 26 interacts and enhances glutamine synthetase activity. FEBS J, 2021, 288: 5350-5373.

[56]

Hagagy N, Saddiq AA, Tag HM, Selim S, AbdElgawad H, Martínez-Espinosa RM. Characterization of polyhydroxybutyrate (PHB) synthesized by newly isolated haloarchaea Halolamina spp. Molecules, 2022, 27: 7366.

[57]

Han S, Zhuang J, Pan Y, Wu W, Ding K. Different characteristics in gut microbiome between advanced adenoma patients and colorectal cancer patients by metagenomic analysis. Microbiol Spectr, 2022, 10: e0159322.

[58]

Hauenstein SI, Hou YM, Perona JJ. The homotetrameric phosphoseryl-tRNA synthetase from Methanosarcina mazei exhibits half-of-the-sites activity. J Biol Chem, 2008, 283: 21997-22006.

[59]

Herdering E, Reif-Trauttmansdorff T, Kumar A, Habenicht T, Hochberg G, Bohn S, Schuller J, Schmitz RA. 2-oxoglutarate triggers assembly of active dodecameric Methanosarcina mazei glutamine synthetase. Elife, 2025, 13: RP97484.

[60]

Hoegenauer C, Hammer HF, Mahnert A, Moissl-Eichinger C. Methanogenic archaea in the human gastrointestinal tract. Nat Rev Gastroenterol Hepatol, 2022, 19: 805-813.

[61]

Hoeppner A, Thomas F, Rueppel A, Hensel R, Blankenfeldt W, Bayer P, Faust A. Structure of the corrinoid:coenzyme M methyltransferase MtaA from Methanosarcina mazei. Acta Crystallogr D Biol Crystallogr, 2012, 68: 1549-1557.

[62]

Holmes DE, Ueki T, Tang HY, Zhou J, Smith JA, Chaput G, Lovley DR. A membrane-bound cytochrome enables Methanosarcina acetivorans to conserve energy from extracellular electron transfer. Mol Biol, 2019, 10: 10-128

[63]

Hu TH, Whang LM, Huang CY. Methanogenic degradation of tetramethylammonium hydroxide by Methanomethylovorans and Methanosarcina. J Hazard Mater, 2018, 357: 180-186.

[64]

Hu TH, Whang LM, Lei CN, Chen CF, Chiang TY, Lin LB, Chen HW, Liu PW, Cheng SS. Evaluation of methanogenic treatment of TMAH (tetramethyl ammonium hydroxide) in a full-scale TFT-LCD wastewater treatment process. Water Sci Technol, 2010, 62: 403-409.

[65]

Hung CC, Lai MC. The phylogenetic analysis and putative function of lysine 2,3-aminomutase from methanoarchaea infers the potential biocatalysts for the synthesis of β-lysine. J Microbiol Immunol Infect, 2013, 46: 1-10.

[66]

Hüttermann J, Schmitz R. Compiling a versatile toolbox for inducible gene expression in Methanosarcina mazei. Microlife., 2024, 5: uqae019.

[67]

Hüttermann J, Schmitz R. Correction to: Compiling a versatile toolbox for inducible gene expression in Methanosarcina mazei. Microlife., 2025, 6: uqae028.

[68]

Ignatz E, Liu L, Dietzek B, Hegemann P, Gärtner W. A minimized photolyase–flavin system mediates efficient light-driven repair of DNA lesions. Biochemistry, 2018, 57: 5714-5724

[69]

Jablonski PE, Pheasant DJ, Ferry JG. Conversion of Kepone by Methanosarcina thermophila. FEMS Microbiol Lett, 1996, 139: 169-173.

[70]

Jäger D, Sharma CM, Thomsen J, Ehlers C, Vogel J, Schmitz RA. Deep sequencing analysis of the Methanosarcina mazei Gö1 transcriptome in response to nitrogen availability. Proc Natl Acad Sci USA, 2009, 106: 21878-21882.

[71]

Jewel D, Kelemen RE, Huang RL, Zhu Z, Sundaresh B, Cao X, Malley K, Huang Z, Pasha M, Anthony J, van Opijnen T, Chatterjee A. Virus-assisted directed evolution of enhanced suppressor tRNAs in mammalian cells. Nat Methods, 2023, 20: 95-103.

[72]

Jiang HK, Wang YH, Weng JH, Kurkute P, Li CL, Lee MN, Chen PJ, Tseng HW, Tsai MD, Wang YS. Probing the active site of deubiquitinase USP30 with noncanonical tryptophan analogues. Biochemistry, 2020, 59: 2205-2209.

[73]

Kaulich PT, Cassidy L, Bartel J, Schmitz RA, Tholey A. Multi-protease approach for the improved identification and molecular characterization of small proteins and short open reading frame-encoded peptides. J Proteome Res, 2021, 20: 2895-2903.

[74]

Kaulich PT, Cassidy L, Weidenbach K, Schmitz RA, Tholey A. Complementarity of different SDS-PAGE gel staining methods for the identification of short open reading frame-encoded peptides. Proteomics, 2020, 20: e2000084.

[75]

Kendall MM, Boone DRDworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. The order Methanosarcinales. The prokaryotes, 20063New YorkSpringer244-256.

[76]

Khamespanah E, Asad S, Vanak Z, Mehrshad M. Niche-aware metagenomic screening for enzyme methioninase illuminates its contribution to metabolic syntrophy. Microb Ecol, 2024, 87: 141.

[77]

Khamplod T, Wongsirichot P, Winterburn J. Production of polyhydroxyalkanoates from hydrolysed rapeseed meal by Haloferax mediterranei. Bioresour Technol, 2023, 386: 129541.

[78]

Kibangou VA, Lilly M, Mpofu AB, de Jonge N, Oyekola OO, Welz PJ. Sulfate-reducing and methanogenic microbial community responses during anaerobic digestion of tannery effluent. Bioresour Technol, 2022, 347: 126308.

[79]

Kim J, Copeland CE, Seki K, Vögeli B, Kwon YC. Tuning the cell-free protein synthesis system for biomanufacturing of monomeric human filaggrin. Front Bioeng Biotechnol, 2020, 8: 590341.

[80]

Kiontke S, Gnau P, Rösing R, Essen LO, Klar T. The crystal structure of class II cyclobutane pyrimidine dimer photolyase from Methanosarcina mazei reveals an unusual antenna chromophore binding site. J Biol Chem, 2011, 286: 17663-17670

[81]

Kiontke S, Lacombat F, Lukacs A, Rösing R, Domratcheva T, Schleicher E. et al.. Dual photoreduction pathways in Methanosarcina mazei class II CPD photolyase: proton transfer via solvent or conserved amino acid. Angew Chem Int Ed Engl, 2014, 53: 13407-13411

[82]

König H, Rachel R, Claus H. Proteinaceous surface layers of Archaea: ultrastructure and biochemistry. Archaea. 2007;315–40.

[83]

Koons BW, Baeseman JL, Novak PJ. Investigation of cell exudates active in carbon tetrachloride and chloroform degradation. Biotechnol Bioeng, 2001, 74: 12-17.

[84]

Krahn N, Zhang J, Melnikov SV, Tharp JM, Villa A, Patel A, Howard RJ, Gabir H, Patel TR, Stetefeld J, Puglisi J, Söll D. tRNA shape is an identity element for an archaeal pyrrolysyl-tRNA synthetase from the human gut. Nucleic Acids Res, 2024, 52: 513-524.

[85]

Kral TA, Bekkum CR, McKay CP. Growth of methanogens on a Mars soil simulant. Orig Life Evol Biosph, 2004, 34: 615-626.

[86]

Krüger T, Weiland S, Boschanski M, Sinha PK, Falck G, Müller KM, Dierks T, Sewald N. Conversion of serine-type aldehyde tags by the radical SAM protein AtsB from Methanosarcina mazei. ChemBioChem, 2019, 20: 2074-2078.

[87]

Kulkarni G, Mand TD, Metcalf WW. Energy conservation via hydrogen cycling in the methanogenic archaeon Methanosarcina barkeri. MBio, 2018, 9: e01256-e1318.

[88]

Kumar A, Trefault N, Olaniran AO. Microbial degradation of 2,4-dichlorophenoxyacetic acid: insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications. Crit Rev Microbiol, 2016, 42(2): 194-208

[89]

Kuzikova I, Andronov E, Zaytseva T, Metelkova L, Zhakovskaya Z, Medvedeva N. A microcosm approach for evaluating the microbial nonylphenol and butyltin biodegradation and bacterial community shifts in co-contaminated bottom sediments from the Gulf of Finland, the Baltic Sea. Environ Sci Pollut Res, 2022, 29: 69849-69860.

[90]

Lacombat F, Kiontke S, Lukacs A, Brettel K, Markovitsi D. Ultrafast dynamics of class II CPD photolyase from Methanosarcina mazei: bifurcating electron transfer pathways and light-driven DNA repair. Photochem Photobiol Sci, 2018, 17: 1000-1010

[91]

Laine B, Culard F, Maurizot JC, Sautière P. The chromosomal protein MC1 from the archaebacterium Methanosarcina sp. CHTI 55 induces DNA bending and supercoiling. Nucleic Acids Res, 1991, 19: 3041-3045.

[92]

Laskar M, Awata T, Kasai T, Katayama A. Anaerobic dechlorination by a humin-dependent pentachlorophenol-dechlorinating consortium under autotrophic conditions induced by homoacetogenesis. Int J Environ Res Public Health, 2019, 16: 2873.

[93]

Lee SH. Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest Res, 2015, 13: 11-18.

[94]

Leigh JA. Nitrogen fixation in methanogens: the archaeal perspective. Curr Issues Mol Biol, 2000, 2: 125-131

[95]

Lemker T, Ruppert C, Stöger H, Wimmers S, Müller V. Overproduction of a functional A1 ATPase from the archaeon Methanosarcina mazei Gö1 in Escherichia coli. Eur J Biochem, 2001, 268: 3744-3750.

[96]

Li Y, Gao Y, Jiang X, Cheng Y, Zhang J, Xu L, Liu X, Huang Z, Xie C, Gong Y. SAMHD1 silencing cooperates with radiotherapy to enhance anti-tumor immunity through IFI16-STING pathway in lung adenocarcinoma. J Transl Med, 2022, 20: 628.

[97]

Lira-Silva E, Santiago-Martínez MG, Hernández-Juárez V, García-Contreras R, Moreno-Sánchez R, Jasso-Chávez R. Activation of methanogenesis by Cadmium in the Marine Archaeon Methanosarcina acetivorans. PLoS ONE, 2021, 7: 48779.

[98]

Liu CL, Bi HR, Bai Z, Fan LH, Tan TW. Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production. Appl Microbiol Biotechnol, 2019, 103: 239-250.

[99]

Liu K, Jiang L, Ma S, Song Z, Wang L, Zhang Q, Xu R, Yang L, Wu J, Yu H. An evolved pyrrolysyl-tRNA synthetase with polysubstrate specificity expands the toolbox for engineering enzymes with incorporation of noncanonical amino acids. Bioresour Bioprocess, 2023, 10: 92.

[100]

Liu S, Zhang M, Ren Y, Jin G, Tao Y, Lyu L, Zhao ZK, Yang X. Engineering Rhodosporidium toruloides for limonene production. Biotechnol Biofuels, 2021, 14: 243.

[101]

Liu Y, Whitman WB. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci, 2008, 1125: 171-189.

[102]

Ma J, Yang X, He J. Comprehensive gut microbiota composition and microbial interactions among the three age groups. PLoS ONE, 2024, 19: e0305583.

[103]

Maeder DL, Anderson I, Brettin TS, Bruce DC, Gilna P, Han CS, Lapidus A, Metcalf WW, Saunders E, Tapia R, Sowers KR. The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol, 2006, 188: 7922-7931.

[104]

Maestre-Reyna M, Wang PH, Nango E, Hosokawa Y, Saft M, Furrer A, Yang CH, Gusti Ngurah Putu EP, Wu WJ, Emmerich HJ, Caramello N, Franz-Badur S, Yang C, Engilberge S, Wranik M, Glover HL, Weinert T, Wu HY, Lee CC, Huang WC, Huang KF, Chang YK, Liao JH, Weng JH, Gad W, Chang CW, Pang AH, Yang KC, Lin WT, Chang YC, Gashi D, Beale E, Ozerov D, Nass K, Knopp G, Johnson PJM, Cirelli C, Milne C, Bacellar C, Sugahara M, Owada S, Joti Y, Yamashita A, Tanaka R, Tanaka T, Luo F, Tono K, Zarzycka W, Müller P, Alahmad MA, Bezold F, Fuchs V, Gnau P, Kiontke S, Korf L, Reithofer V, Rosner CJ, Seiler EM, Watad M, Werel L, Spadaccini R, Yamamoto J, Iwata S, Zhong D, Standfuss J, Royant A, Bessho Y, Essen LO, Tsai MD. Visualizing the DNA repair process by a photolyase at atomic resolution. Science, 2023, 382: eadd7795.

[105]

Maestrojuan GM, Boone DR. Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T. Int J Syst Evol Microbiol, 1991, 41: 267-274

[106]

Matarazzo F, Ribeiro AC, Feres M, Faveri M, Mayer MP. Diversity and quantitative analysis of Archaea in aggressive periodontitis and periodontally healthy subjects. J Clin Periodontol, 2011, 38: 621-627.

[107]

Mathur R, Barlow GM. Obesity and the microbiome. Expert Rev Gastroenterol Hepatol, 2015, 9(8): 1087-1099.

[108]

Maus D, Heinz J, Schirmack J, Airo A, Kounaves SP, Wagner D, Schulze-Makuch D. Methanogenic archaea can produce methane in deliquescence-driven Mars analog environments. Sci Rep, 2020, 10: 6.

[109]

Medalia N, Sharon M, Martinez-Arias R, Mihalache O, Robinson CV, Medalia O, Zwickl P. Functional and structural characterization of the Methanosarcina mazei proteasome and PAN complexes. J Struct Biol, 2006, 156: 84-92.

[110]

Meineke B, Elsässer SJ. Generation of amber suppression cell lines using CRISPR-Cas9. Methods Mol Biol, 2023, 2676: 169-180.

[111]

Meineke B, Heimgärtner J, Lafranchi L, Elsässer SJ. Methanomethylophilus alvus Mx1201 provides basis for mutual orthogonal pyrrolysyl tRNA/aminoacyl-tRNA synthetase pairs in mammalian cells. ACS Chem Biol, 2018, 13: 3087-3096.

[112]

Metcalf WW, Zhang JK, Apolinario E, Sowers KR, Wolfe RS. A genetic system for Archaea of the genus Methanosarcina: liposome-mediated transformation and construction of shuttle vectors. Proc Natl Acad Sci USA, 1997, 94: 2626-2631.

[113]

Milán Z, Montalvo S, Ilangovan K, Monroy O, Chamy R, Weiland P, Borja R. The impact of ammonia nitrogen concentration and zeolite addition on the specific methanogenic activity of granular and flocculent anaerobic sludges. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2010, 45: 883-889.

[114]

Mohapatra S, Ghosh S, Pattnaik S. et al.. PEGylated L-methioninase for prolonged circulation and enhanced tumor suppression in vivo. J Pharm Sci, 2019, 108: 1052-1061

[115]

Mukai T, Kobayashi T, Hino N, Yanagisawa T, Sakamoto K, Yokoyama S. Adding l-lysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases. Biochem Biophys Res Commun, 2008, 371: 818-822.

[116]

Müller P, Brettel K, Gruschus JM. The reaction mechanism of DNA photolyase from Methanosarcina mazei: evidence for an unusual radical intermediate. J Phys Chem B, 2018, 122: 11084-11092

[117]

Nalla K, Chatterjee B, Poyya J, Swain A, Ghosh K, Pan A, Joshi CG, Manavathi B, Kanade SR. Epigallocatechin-3-gallate inhibit the protein arginine methyltransferase 5 and enhancer of Zeste homolog 2 in breast cancer both in vitro and in vivo. Arch Biochem Biophys, 2025, 763: 110223.

[118]

Nayak DD, Metcalf WW. Genetic techniques for studies of methyl-coenzyme M reductase from Methanosarcina acetivorans C2A. Methods Enzymol, 2018, 613: 325-347.

[119]

Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol, 2014, 14: 329-342.

[120]

Odoi KA, Huang Y, Rezenom YH, Liu WR. Nonsense and sense suppression abilities of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNAPyl pairs in the Escherichia coli BL21 (DE3) cell strain. PLoS ONE, 2013, 8: e57035.

[121]

Okada M, Unno H, Emi KI, Matsumoto M, Hemmi H. A versatile cis-prenyltransferase from Methanosarcina mazei catalyzes both C- and O-prenylations. J Biol Chem, 2021, 296: 100679.

[122]

Onder S, Biberoglu K, Tacal O. The kinetics of inhibition of human acetylcholinesterase and butyrylcholinesterase by methylene violet 3RAX. Chem Biol Interact, 2019, 314: 108845.

[123]

Oren A. Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol, 2011, 13(8): 1908-1923.

[124]

Yoshida R, Yoshimura T, Hemmi H. Reconstruction of the "archaeal" mevalonate pathway from the methanogenic archaeon Methanosarcina mazei in Escherichia coli cells. Appl Environ Microbiol, 2020, 86: e02889-e2919.

[125]

Pant A, Rai JP. Impact of chlorpyrifos, TCP and N-substituted aromatic compounds on methane production from organic solid waste (OSW) using co-culture of Pseudomonas aeruginosa and Methanosarcina mazei. Biofuels, 2020, 11: 919-927.

[126]

Pascale RM, Simile MM, Calvisi DF, Feo CF, Feo F. S-Adenosylmethionine: from the discovery of its inhibition of tumorigenesis to its use as a therapeutic agent. Cells, 2022, 11: 409.

[127]

Paulchamy C, Vakkattuthundi Premji S, Shanmugam S. Methanogens and what they tell us about how life might survive on Mars. Crit Rev Biochem Mol Biol, 2024, 59: 337-362.

[128]

Paulo LM, Ramiro-Garcia J, van Mourik S, Stams AJ, Sousa DZ. Effect of nickel and cobalt on methanogenic enrichment cultures and role of biogenic sulfide in metal toxicity attenuation. Front Microbiol, 2017, 8: 1341.

[129]

Perman E, Karlsson A, Westerholm M, Isaksson S, Schnürer A. High-solid digestion—a comparison of completely stirred and plug-flow reactor systems. Waste Manag, 2024, 189: 265-275.

[130]

Pflüger K, Baumann S, Gottschalk G, Lin W, Santos H, Müller V. Lysine-2,3-aminomutase and β-lysine acetyltransferase genes of methanogenic archaea are salt induced and are essential for the biosynthesis of N(ε)-acetyl-β-lysine and growth at high salinity. Appl Environ Microbiol, 2003, 69: 6047-6055.

[131]

Porter JJ, Jang HS, Van Fossen EM, Nguyen DP, Willi TS, Cooley RB, Mehl RA. Genetically encoded protein tyrosine nitration in mammalian cells. ACS Chem Biol, 2019, 14: 1328-1336.

[132]

Poulsen JS, Macêdo WV, Bonde T, Nielsen JL. Energetically exploiting lignocellulose-rich residues in anaerobic digestion technologies: from bioreactors to proteogenomics. Biotechnol Biofuels Bioprod, 2023, 16: 183.

[133]

Pritchett MA, Metcalf WW. Genetic, physiological and biochemical characterization of multiple methanol methyltransferase isozymes in Methanosarcina acetivorans C2A. Mol Microbiol, 2005, 56: 1183-1194.

[134]

Purohit NK, Robu M, Shah RG, Geacintov NE, Shah GM. Characterization of the interactions of PARP-1 with UV-damaged DNA in vivo and in vitro. Sci Rep, 2016, 6: 19020.

[135]

Qian J, Zhang Y, Bai L, Yan X, Du Y, Ma R, Ni BJ. Revealing the mechanisms of polypyrrole (Ppy) enhancing methane production from anaerobic digestion of waste activated sludge (WAS). Water Res, 2022, 226: 119291.

[136]

Regueira-Iglesias A, Vázquez-González L, Balsa-Castro C, Blanco-Pintos T, Martín-Biedma B, Arce VM, Carreira MJ, Tomás I. In-silico detection of oral prokaryotic species with highly similar 16S rRNA sequence segments using different primer pairs. Front Cell Infect Microbiol, 2022, 11: 770668.

[137]

Robichaux M, Howell M, Boopathy R. Methanogenic activity in human periodontal pocket. Curr Microbiol, 2003, 46: 53-58.

[138]

Rodriguez Carrero RJ, Lloyd CT, Borkar J, Nath S, Mirica LM, Nair S, Booker SJ, Metcalf W. Genetic and biochemical characterization of a radical SAM enzyme required for post-translational glutamine methylation of methyl-coenzyme M reductase. MBio, 2025, 16(2): e0354624.

[139]

Ronimus RS, de Heus E, Morgan HW. Sequencing, expression, characterisation and phylogeny of the ADP-dependent phosphofructokinase from the hyperthermophilic, euryarchaeal Thermococcus zilligii. Biochim Biophys Acta, 2001, 1517: 384-391.

[140]

Ronimus RS, Morgan HW. The biochemical properties and phylogenies of phosphofructokinases from extremophiles. Extremophiles, 2001, 5: 357-373.

[141]

Rother M, Boccazzi P, Bose A, Pritchett MA, Metcalf WW. Methanol-dependent gene expression demonstrates that methyl-coenzyme M reductase is essential in Methanosarcina acetivorans C2A and allows isolation of mutants with defects in regulation of the methanol utilization pathway. J Bacteriol, 2005, 187: 5552-5559.

[142]

Saini J, Deere TM, Lessner DJ. The minimal SUF system is not required for Fe-S cluster biogenesis in the methanogenic archaeon Methanosarcina acetivorans. Sci Rep, 2023, 13: 15120.

[143]

Sappakhaw K, Jantarug K, Slavoff SA, Israsena N, Uttamapinant C. A genetic code expansion-derived molecular beacon for the detection of intracellular amyloid-β peptide generation. Angew Chem Int Ed Engl, 2021, 60: 3934-3939.

[144]

Saranya S, Prathiviraj R, Chellapandi P. Evolutionary transitions of DNA replication origins between archaea and bacteria. J Basic Microbiol. 2024; e2400527.

[145]

Saranya S, Thamanna L, Chellapandi P. Unveiling the potential of systems biology in biotechnology and biomedical research. Syst Microbiol Biomanuf, 2024, 4: 1217-1238.

[146]

Saranya S, Thamanna L, Sreekutty VP, Dhayanithi S, Chellapandi P. Bioremediation of oil and natural gas industry waste using methanogens: current status and future perspective to biohythane production. Arab J Sci Eng, 2024, 50: 4457-4475.

[147]

Saranya SV, Chellapandi P. Convergent evolution of coenzyme metabolism in Methanosarcina mazei: Insights into primitive life and metabolic adaptations. J Basic Microbiol. 2025;e70015.

[148]

Saranya SV, Prathiviraj R, Chellapandi P. Mobilome-mediated speciation: Genomic insights into horizontal gene transfer in Methanosarcina. J Basic Microbiol. 2025;e70013.

[149]

Saum R, Mingote A, Santos H, Müller V. A novel limb in the osmoregulatory network of Methanosarcina mazei Gö1: N(ε)-acetyl-β-lysine can be substituted by glutamate and alanine. Environ Microbiol, 2009, 11: 1056-1065.

[150]

Scanlan PD, Shanahan F, Marchesi JR. Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis. BMC Microbiol, 2008, 8: 1-8.

[151]

Scherer PA, Bochem HP. Energy-dispersive X-ray microanalysis of the methanogen Methanosarcina barkeri Fusaro grown on methanol and in the presence of heavy metals. Curr Microbiol, 1983, 9: 187-193.

[152]

Schlegel K, Müller V. Sodium ion translocation and ATP synthesis in methanogens. Methods Enzymol, 2011, 494: 233-255.

[153]

Schneider N, Gäbelein C, Wiener J, Georgiev T, Gobet N, Weber W, Meier M. Genetic code expansion method for temporal labeling of endogenously expressed proteins. ACS Chem Biol, 2018, 13(11): 3049-3053.

[154]

Sengupta A, Jebur M, Kamaz M, Wickramasinghe SR. Removal of emerging contaminants from wastewater streams using membrane bioreactors: a review. Membranes, 2021, 12(1): 60.

[155]

Sereme Y, Mezouar S, Grine G, Mege JL, Drancourt M, Corbeau P, Vitte J. Methanogenic archaea: emerging partners in the field of allergic diseases. Clin Rev Allergy Immunol, 2019, 57: 456-466.

[156]

Shaferman M, Moshel I, Dror S, Avital M, Meridor S, Alfonta L. Streamlining tRNA-synthetase evolution for genetic code expansion and deep sequencing analyses of its evolved variants. ACS Synth Biol, 2025, 14: 1777-1789.

[157]

Shcherbakova VA, Chuvil’skaia NA, Golovchenko NP, Suzina NE, Lysenko AM, Laurinavichus KS, Akimenko VK. Analysis of the anaerobic microbial community capable of degrading p-toluene sulphonate. Mikrobiologiia, 2003, 72: 752-758

[158]

Sioud M, Possot O, Elie C, Sibold L, Forterre P. Coumarin and quinolone action in archaebacteria: evidence for the presence of a DNA gyrase-like enzyme. J Bacteriol, 1988, 170: 946-953.

[159]

Sittijunda S, Reungsang A. Methane production from the co-digestion of algal biomass with crude glycerol by anaerobic mixed cultures. Waste Biomass Valorization, 2020, 11: 1873-1881.

[160]

Spanheimer R, Müller V. The molecular basis of salt adaptation in Methanosarcina mazei Gö1. Arch Microbiol, 2008, 190: 271-279.

[161]

Sushkin ME, Jung M, Lemke EA. Tuning the functionality of designer translating organelles with orthogonal tRNA synthetase/tRNA pairs. J Mol Biol, 2024, 436: 168728.

[162]

Takahashi H, Dohmae N, Kim KS, Shimuta K, Ohnishi M, Yokoyama S, Yanagisawa T. Genetic incorporation of non-canonical amino acid photocrosslinkers in Neisseria meningitidis: new method provides insights into the physiological function of the function-unknown NMB1345 protein. PLoS ONE, 2020, 15: e0237883.

[163]

Tang L, Sun Y, Lu W, Chen X, Mosa A, Minkina T, Gao Y, Ling W. A novel remediation strategy of mixed calcium peroxide and degrading bacteria for polycyclic aromatic hydrocarbon contaminated water. J Hazard Mater, 2024, 470: 134122.

[164]

Taylor CJ, Hardy FJ, Burke AJ, Bednar RM, Mehl RA, Green AP, Lovelock SL. Engineering mutually orthogonal PylRS/tRNA pairs for dual encoding of functional histidine analogues. Protein Sci, 2023, 32: e4640.

[165]

Teramoto H, Kojima K. Genetic code expansion of the silkworm Bombyx mori using a pyrrolysyl-tRNA synthetase/tRNAPyl pair. ACS Synth Biol, 2025, 14: 87-93.

[166]

Thamanna L, Chellapandi P. Deciphering metabolic regulatory mechanisms in vital anaerobes for enhanced biogas production. Syst Microbiol Biomanuf. 2024.

[167]

Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol, 2008, 6: 579-591.

[168]

Thevasundaram K, Gallagher JJ, Cherng F, Chang MCY. Engineering nonphotosynthetic carbon fixation for production of bioplastics by methanogenic archaea. Proc Natl Acad Sci U S A, 2022, 119: e2118638119.

[169]

Thomas F, Diaz-Bone RA, Wuerfel O, Huber B, Weidenbach K, Schmitz RA, Hensel R. Connection between multimetal(loid) methylation in methanoarchaea and central intermediates of methanogenesis. Appl Environ Microbiol, 2011, 77: 8669-8675.

[170]

Thomsen J, Schmitz RA. Generating a small shuttle vector for effective genetic engineering of Methanosarcina mazei allowed first insights in plasmid replication mechanism in the methanoarchaeon. Int J Mol Sci, 2022, 23: 11910.

[171]

Tseng HW, Baumann T, Sun H, Wang YS, Ignatova Z, Budisa N. Expanding the scope of orthogonal translation with pyrrolysyl-tRNA synthetases dedicated to aromatic amino acids. Molecules, 2020, 25: 4418.

[172]

Tufail MA, Jordan B, Hadjeras L, Gelhausen R, Cassidy L, Habenicht T, Gutt M, Hellwig L, Backofen R, Tholey A, Sharma CM, Schmitz RA. Uncovering the small proteome of Methanosarcina mazei using Ribo-seq and peptidomics under different nitrogen conditions. Nat Commun, 2024, 15: 8659.

[173]

van Leerdam RC, de Bok FA, Lens PN, Stams AJ, Janssen AJ. Anaerobic methanethiol degradation in upflow anaerobic sludge bed reactors at high salinity (≥ 0.5 M Na⁺). Biotechnol Bioeng, 2007, 98: 91-100.

[174]

Vögeli B, Engilberge S, Girard E, Riobé F, Maury O, Erb TJ, Shima S, Wagner T. Archaeal acetoacetyl-CoA thiolase/HMG-CoA synthase complex channels the intermediate via a fused CoA-binding site. Proc Natl Acad Sci U S A, 2018, 115: 3380-3385.

[175]

Vyrides I, Rivett DW, Bruce KD, Lilley AK. Selection and assembly of indigenous bacteria and methanogens from spent metalworking fluids and their potential as a starting culture in a fluidized bed reactor. Microb Biotechnol, 2019, 12: 1302-1312.

[176]

Wang D, Zhao J, Zeng G, Chen Y, Bond PL, Li X. How does poly(hydroxyalkanoate) affect methane production from the anaerobic digestion of waste-activated sludge?. Environ Sci Technol, 2015, 49: 12253-12262.

[177]

Wang H, Byrne JM, Liu P, Liu J, Dong X, Lu Y. Redox cycling of Fe(II) and Fe(III) in magnetite accelerates aceticlastic methanogenesis by Methanosarcina mazei. Environ Microbiol Rep, 2020, 12: 97-109.

[178]

Wang K, Zhang R. Production of polyhydroxyalkanoates (PHA) by Haloferax mediterranei from food waste derived nutrients for biodegradable plastic applications. J Microbiol Biotechnol, 2021, 31: 338-347.

[179]

Wu H, Zhang H, Dong T, Li Z, Guo X, Chen H, Yao Y. Overcoming extreme ammonia inhibition on methanogenesis by artificially constructing a synergistic community with acidogenic bacteria and hydrogenotrophic archaea. Adv Sci, 2025, 12: e2502743.

[180]

Wydro U, Wołejko E, Luarasi L, Puto K, Tarasevičienė Ž, Jabłońska-Trypuć A. A review on pharmaceuticals and personal care products residues in the aquatic environment and possibilities for their remediation. Sustainability, 2023, 16: 169.

[181]

Xiao Y, Mackey HR, Tang W, Lu H, Hao T. Disentangling microbial niche balance and intermediates’ trade-offs for anaerobic digestion stability and regulation. Water Res, 2024, 261: 122000.

[182]

Xing BS, Su YM, Fu YL, Wu YF, Yan CH, Wang XC, Li YY, Chen R. Comparison of the short- and long-term effects of zinc ions on the anaerobic mesophilic co-digestion of food waste and waste activated sludge: digester performance, antibiotic resistance gene reduction and the microbial community. J Hazard Mater, 2024, 480: 136119.

[183]

Xuan YF, Lu S, Ou YJ, Bao XB, Huan XJ, Song SS, Miao ZH, Wang YQ. The combination of methionine adenosyltransferase 2A inhibitor and methyltransferase like 3 inhibitor promotes apoptosis of non-small cell lung cancer cells and produces synergistic anti-tumor activity. Biochem Biophys Res Commun, 2024, 716: 150011.

[184]

Yamada S, Niwa J, Ishigaki S, Takahashi M, Ito T, Sone J, Doyu M, Sobue G. Archaeal proteasomes effectively degrade aggregation-prone proteins and reduce cellular toxicities in mammalian cells. J Biol Chem, 2006, 281: 23842-23851.

[185]

Yanagisawa T, Ishii R, Hikida Y, Fukunaga R, Sengoku T, Sekine S, Yokoyama S. A SelB/EF-Tu/aIF2γ-like protein from Methanosarcina mazei in the GTP-bound form binds cysteinyl-tRNA^Cys. J Struct Funct Genom, 2015, 16: 25-41.

[186]

Yang Z, Lu Y. Coupling methanogenesis with iron reduction by acetotrophic Methanosarcina mazei zm-15. Environ Microbiol Rep, 2022, 14: 804-811.

[187]

Ye J, Zhuang M, Hong M, Zhang D, Ren G, Hu A, Yang C, He Z, Zhou S. Methanogenesis in the presence of oxygenic photosynthetic bacteria may contribute to global methane cycle. Nat Commun, 2024, 15: 5682.

[188]

Yuan J, Li S, Cheng J, Guo C, Shen C, He J, He Y. Potential role of methanogens in microbial reductive dechlorination of organic chlorinated pollutants in situ. Environ Sci Technol, 2021, 55: 5917-5928.

[189]

Zhang J, Zhao M, Xiao W, Chang L, Wang F, Xu P. Recombinant expression, purification and characterization of acetylated Lysarginase from Escherichia coli with high activity and stability. Rapid Commun Mass Spectrom, 2019, 33: 1067-1075.

[190]

Zhang L, Li F, Tsui TH, Yoh K, Sun J, Loh KC, Tong YW. Microbial succession analysis reveals the significance of restoring functional microorganisms during rescue of failed anaerobic digesters by bioaugmentation of nano-biochar-amended digestate. Bioresour Technol, 2022, 352: 127102.

[191]

Zhang R, Zhang CT. Identification of replication origins in archaeal genomes based on the Z-curve method. Archaea, 2005, 1: 335-346.

[192]

Zhang R, Zhang CT. Single replication origin of the archaeon Methanosarcina mazei revealed by the Z curve method. Biochem Biophys Res Commun, 2002, 297: 396-400.

[193]

Zhang W, Lin Z, Pang S, Bhatt P, Chen S. Insights into the biodegradation of lindane (γ-hexachlorocyclohexane) using a microbial system. Front Microbiol, 2020, 11: 522.

[194]

Zhao YX, Rao ZM, Xue YF, Gong P, Ji YZ, Ma YH. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by haloarchaeon Halogranum amylolyticum. Appl Microbiol Biotechnol, 2015, 99: 7639-7649.

[195]

Zheng S, Wang B, Liu F, Wang O. Magnetite production and transformation in the methanogenic consortia from coastal riverine sediments. J Microbiol, 2017, 55: 862-870.

[196]

Zheng T, Fu J, Xiong Q, Shen X, Li B, Zhao X, Yu Z. Photo-regulated genetic encoding of dibenzo[c,g][1,2]diazocine on proteins via configuration switching. Chem Commun, 2023, 59: 1201-1204.

[197]

Zhu M, Feng X, Qiu G, Feng J, Zhang L, Brookes PC, Xu J, He Y. Synchronous response in methanogenesis and anaerobic degradation of pentachlorophenol in flooded soil. J Hazard Mater, 2019, 374: 258-266.

[198]

Zhu P, Molina Resendiz M, von Ossowski I, Scheller S. A promoter–RBS library for fine-tuning gene expression in Methanosarcina acetivorans. Appl Environ Microbiol, 2024, 90(9): e01092-e1124.

[199]

Zhu P, Somvanshi T, Bao J, Scheller S. CRISPR/Cas12a toolbox for genome editing in Methanosarcina acetivorans. Front Microbiol, 2023, 14: 1235616.

[200]

Zinder SHFerry JG. Physiological ecology of methanogens. Methanogenesis: ecology, physiology, biochemistry and genetics, 1993BostonSpringer128-206.

Funding

Science and Engineering Research Council(EEQ/2020/000095)

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

346

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/