Metabolic adaptation and alcohol dehydrogenase induction in Magnusiomyces capitatus through systematic bioprocess tuning

Dhanasekaran Subashri , Kalyanasundaram Sundaragnanam , Abbas Ali Abdul Rahuman , Pambayan Ulagan Mahalingam

Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (3) : 1168 -1190.

PDF
Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (3) : 1168 -1190. DOI: 10.1007/s43393-025-00380-1
Original Article
research-article

Metabolic adaptation and alcohol dehydrogenase induction in Magnusiomyces capitatus through systematic bioprocess tuning

Author information +
History +
PDF

Abstract

Alcohol dehydrogenases (ADHs) are key enzymes in microbial ethanol metabolism and ethanol detection with significant relevance in industrial bioprocessing and synthetic biology. The study focuses on enhancing the activation of Magnusiomyces capitatus ADHs specific to ethanol for ethanol conversion and detection. This was achieved by evaluating its specific alcohol dehydrogenase (ADH) activity under varying growth conditions by following a systematic one-factor-at-a-time (OFAT) approach and a central composite rotatable design (CCRD). Using the OFAT method, the most critical factor for improving specific ADH activity were identified as glucose, ammonium sulphate, zinc sulphate, and pH, which was further optimized using the CCRD. The specific ADH activity of M. capitatus in the developed medium was 489.28 ± 0.31 mU mg− 1 of protein, which was greater than that of cells cultured in basal ethanol medium. Furthermore, the volatile compounds (VOCs) generated during ethanol oxidation under aerobic conditions were analyzed by GC-MS, validating the metabolic flexibility of M. capitatus under optimal circumstances. These findings offer new insights into the systems-level metabolic behavior of M. capitatus under ethanol stress and highlight its potential as a microbial platform for future biomanufacturing and enzymatic conversion processes with potential applications in biosensing and industrial bioprocessing.

Keywords

Ethanol / Alcohol dehydrogenase / Magnusiomyces capitatus / Specific ADH activity / Ethanol oxidation / Biocatalysis

Cite this article

Download citation ▾
Dhanasekaran Subashri, Kalyanasundaram Sundaragnanam, Abbas Ali Abdul Rahuman, Pambayan Ulagan Mahalingam. Metabolic adaptation and alcohol dehydrogenase induction in Magnusiomyces capitatus through systematic bioprocess tuning. Systems Microbiology and Biomanufacturing, 2025, 5(3): 1168-1190 DOI:10.1007/s43393-025-00380-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Greim H. January 1). Ethanol. Reference module in biomedical sciences. Elsevier; 2023. https://doi.org/10.1016/B978-0-12-824315-2.00775-2.

[2]

Criddle WJ, Koziel JA, Van Leeuwen JH, Jenks WS. (2019, January 1). Ethanol. In Encyclopedia of Analytical Science. Academic Press. https://doi.org/10.1016/B978-0-12-409547-2.14560-3

[3]

Wyman CE. (2004, January 1). Ethanol Fuel. In Encyclopedia of Energy. Elsevier. https://doi.org/10.1016/B0-12-176480-X/00518-0

[4]

PohoreckyLA, BrickJ. Pharmacology of ethanol. Pharmacol Ther, 1988, 36(2–3): 335-427.

[5]

AlpatŞ, TelefoncuA. Development of an alcohol dehydrogenase biosensor for ethanol determination with toluidine blue O covalently attached to a cellulose acetate modified electrode. Sens 2010, 2010, 10(1): 748-64.

[6]

MehrotraP. Biosensors and their applications - A review. J Oral Biology Craniofac Res, 2016, 6(2): 153-9.

[7]

WenG, ZhangY, ShuangS, DongC, ChoiMMF. Application of a biosensor for monitoring of ethanol. Biosens Bioelectron, 2007, 23(1): 121-9.

[8]

CrabbDW, BosronWF, LiTK. Ethanol metabolism. Pharmacol Ther, 1987, 34(1): 59-73.

[9]

MaZ, MelianaC, MunawarohHSH, KaramanC, Karimi-MalehH, LowSS, ShowPL. Recent advances in the analytical strategies of microbial biosensor for detection of pollutants. Chemosphere, 2022, 306135515.

[10]

Pucciarelli, S., Bonacucina, G., Bernabucci, F., Cespi, M., Mencarelli, G., De Fronzo,G. S.,… Palmieri, G. F. (2012). A study on the stability and enzymatic activity of yeast alcohol dehydrogenase in presence of the self-assembling block copolymer poloxamer 407. Applied Biochemistry and Biotechnology, 167(2), 298–313. https://doi.org/10.1007/S12010-012-9692-X/METRICS.

[11]

ShermanF. Getting started with yeast. Methods Enzymol, 2002, 350: 3-41.

[12]

ParapouliM, VasileiadisA, AfendraAS, HatziloukasE. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol, 2020, 611.

[13]

Soares-CostaA, NakayamaDG, AndradeL, de CatelliF, BassiLF, Ceccato-AntoniniAPG, Henrique-SilvaF. Industrial PE-2 strain of Saccharomyces cerevisiae: from alcoholic fermentation to the production of Recombinant proteins. New Biotechnol, 2014, 31(1): 90-7.

[14]

RajSB, RamaswamyS, PlappBV. Yeast alcohol dehydrogenase structure and catalysis. Biochemistry, 2014, 53(36): 5791-803.

[15]

AndreuC, del OlmoM. Biocatalysis with unconventional yeasts. Catalysts, 2024, 1411767.

[16]

ŠoštarićN, ArslanA, CarvalhoB, PlechM, VoordeckersK, VerstrepenKJ, Van NoortV. Integrated Multi-Omics analysis of mechanisms underlying yeast ethanol tolerance. J Proteome Res, 2021, 20(8): 3840-52.

[17]

DongSJ, YiCF, LiH. Changes of Saccharomyces cerevisiae cell membrane components and promotion to ethanol tolerance during the bioethanol fermentation. Int J Biochem Cell Biol, 2015, 69: 196-203.

[18]

PscheidtB, GliederA. Yeast cell factories for fine chemical and API production. Microb Cell Fact, 2008, 7(1): 1-36.

[19]

SalgadoV, FonsecaC, Lopes da SilvaT, RoseiroJC, EusébioA. Isolation and identification of Magnusiomyces capitatus as a Lipase-Producing yeast from Olive mill wastewater. Waste Biomass Valoriz, 2020, 11(7): 3207-21.

[20]

Yamada-OnoderaK, FukuiM, TaniY. Purification and characterization of alcohol dehydrogenase reducing N-benzyl-3-pyrrolidinone from geotrichum capitatum. J Biosci Bioeng, 2007, 103(2): 174-8.

[21]

SubashriD, MahalingamPU. Screening and characterization of potential ethanol oxidizing yeast isolates from sugar- rich organic waste resources using schiff`s-base reaction. J Microbiol Biotechnol Food Sci, 2023, 12(5): e9604-9604.

[22]

AsokumarN, KimSD, MaK. Alcohol dehydrogenases catalyzing the production of ethanol at high temperatures. Innov Ener Res, 2018, 7(219): 2576-1463.

[23]

LinY, HeP, WangQ, LuD, LiZ, WuC, JiangN. The alcohol dehydrogenase system in the Xylose-Fermenting yeast Candida Maltosa. PLoS ONE, 2010, 57e11752.

[24]

Zavec D, Troyer C, Maresch D, Altmann F, Hann S, Gasser B, Mattanovich D. Beyond alcohol oxidase: the Methylotrophic yeast Komagataella phaffii utilizes methanol also with its native alcohol dehydrogenase Adh2. FEMS Yeast Res. 2021;21(2). https://doi.org/10.1093/FEMSYR/FOAB009.

[25]

NurdianiD, AK. The analytical performance of Saccharomyces cerevisiae and Bacillus megaterium microbial consortium as recognition element in ethanol biosensor. Biodiversitas, 2023, 24: 5928-36.

[26]

MaoX, wenY, XiongM, NiuZ, JiangL, ZhangH, ChenR. Electrochemical biosensors based on carbon nanocages for the detection of NADH and ethanol. Int J Electrochem Sci, 2021, 164210454.

[27]

WangS, YaoZ, YangT, ZhangQ, GaoF. Editors’ Choice—An enzymatic electrode integrated with alcohol dehydrogenase and chloranil in Liquid-Crystalline cubic phases on carbon nanotubes for sensitive amperometric detection of NADH and ethanol. J Electrochem Soc, 2019, 166(10): G116-21.

[28]

HuaE, WangL, JingX, ChenC, XieGOne-step fabrication of integrated disposable biosensor based on ADH2013

[29]

VoronovaEA, IliasovPV, ReshetilovAN. Development, investigation of parameters and Estimation of possibility of adaptation of Pichia angusta based microbial sensor for ethanol detection. Anal Lett, 2008, 41(3): 377-91.

[30]

YangZ, FuH, YeW, XieY, LiuQ, WangH, WeiD. Efficient asymmetric synthesis of chiral alcohols using high 2-propanol tolerance alcohol dehydrogenase Sm ADH2 via an environmentally friendly TBCR system. Catal Sci Technol, 2020, 10(1): 70-8.

[31]

Ob-EyeJ, PraserthdamP, JongsomjitB. Dehydrogenation of ethanol to acetaldehyde over different metals supported on carbon catalysts. Catalysts, 2019, 9166.

[32]

RajagopalanA, KroutilW. Biocatalytic reactions: selected highlights. Mater Today, 2011, 14(4): 144-52.

[33]

PereiraPR, FreitasCS, PaschoalinVMF. Saccharomyces cerevisiae biomass as a source of next-generation food preservatives: evaluating potential proteins as a source of antimicrobial peptides. Compr Rev Food Sci Food Saf, 2021, 20(5): 4450-79.

[34]

KaraoğlanM, Erden-KaraoğlanF, YılmazS, İnanM. Identification of major ADH genes in ethanol metabolism of Pichia pastoris. Yeast, 2020, 37(2): 227-36.

[35]

Simpson-LavyK, KupiecM. Carbon catabolite repression in yeast is not limited to glucose. Sci Rep, 2019, 9(1): 1-10.

[36]

ChoiBH, KangHJ, KimSC, LeePC. Organelle engineering in yeast: enhanced production of Protopanaxadiol through manipulation of peroxisome proliferation in Saccharomyces cerevisiae. Microorganisms, 2022, 103650.

[37]

Vasylkovska R, Petriv N, Semchyshyn H. Carbon sources for yeast growth as a precondition of hydrogen peroxide induced hormetic phenotype. Int J Microbiol. 2015;2015. https://doi.org/10.1155/2015/697813.

[38]

Wickerham LJ. (1951). Taxonomy of yeasts. Technical Bulletin, (1029). Retrieved from https://naldc.nal.usda.gov/download/CAT86201020/PDF

[39]

Lairón-PerisM, RoutledgeSJ, LinneyJA, Alonso-del-RealJ, SpickettCM, PittAR, QuerolA. Lipid composition analysis reveals mechanisms of ethanol tolerance in the model yeast Saccharomyces cerevisiae. Appl Environ Microbiol, 2021, 87(12): 1-22.

[40]

Krzysztof T. (2020). Micro-Bradford assay for determination of protein concentration. Scribd. Retrieved December 3, 2022, from http://ziemniak-bonin.pl/en/?option=com_content%26;view=article%26;id=77

[41]

Sigma-Aldrich. (n.d.). Alcohol Dehydrogenase Activity Assay Kit. Retrieved March 6. 2023, from https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/509/570/mak053bul.pdf

[42]

SivarathnakumarS, JayamuthunagaiJ, BaskarG, PraveenkumarR, SelvakumariIAE, BharathirajaB. Bioethanol production from Woody stem Prosopis juliflora using thermo tolerant yeast Kluyveromyces Marxianus and its kinetics studies. Bioresour Technol, 2019, 293122060.

[43]

ChenXH, LouWY, ZongMH, SmithTJ. Optimization of culture conditions to produce high yields of active Acetobacter sp. CCTCC M209061 cells for anti-Prelog reduction of prochiral ketones. BMC Biotechnol, 2011, 11110.

[44]

Hahn-HägerdalB, KarhumaaK, LarssonCU, Gorwa-GrauslundM, GörgensJ, van ZylWH. Role of cultivation media in the development of yeast strains for large scale industrial use. Microb Cell Fact, 2005, 4(1): 1-16.

[45]

MalathiR, KaviyarasanD, ChandrasekarS. Study on preliminary phytochemicals and GC-MS analysis of Justicia adhatoda leaves extract. J Drug Delivery Ther, 2019, 9(4–s): 547-50.

[46]

SakthiselvanP, MeenambigaSS, MadhumathiR, SakthiselvanP, MeenambigaSS, MadhumathiR. Kinetic studies on cell growth. Cell Growth, 2019.

[47]

Kovárová-KovarK, EgliT. Growth kinetics of suspended microbial cells: from Single-Substrate-Controlled growth to Mixed-Substrate kinetics. Microbiol Mol Biol Rev, 1998, 623646.

[48]

TesfawA, OnerET, AssefaF. Optimization of ethanol production using newly isolated ethanologenic yeasts. Biochem Biophys Rep, 2021, 25100886.

[49]

StornettaA, GuidolinV, BalboS. Alcohol-Derived acetaldehyde exposure in the oral cavity. Cancers, 2018, 10120.

[50]

MaM, LiuZL. Mechanisms of ethanol tolerance in saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2010, 87(3): 829-45.

[51]

YouKM, RosenfieldCL, KnippleDC. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol, 2003, 69(3): 1499-503.

[52]

Kwolek-MirekM, BednarskaS, Dubicka-LisowskaA, MaslankaR, Zadrag-TeczaR, KaszyckiP. Unbalance between pyridine nucleotide cofactors in the SOD1 deficient yeast Saccharomyces cerevisiae causes hypersensitivity to alcohols and aldehydes. Int J Mol Sci, 2023, 241659.

[53]

Prado, C. D., Mandrujano, G. P. L., Souza, J. P., Sgobbi, F. B., Novaes, H. R., da Silva, J. P. M. O.,… Cunha, A. F. (2020). Physiological characterization of a new thermotolerant yeast strain isolated during Brazilian ethanol production, and its application in high-temperature fermentation. Biotechnology for Biofuels, 13(1), 1–15.https://doi.org/10.1186/S13068-020-01817-6/TABLES/2.

[54]

MavrommatiM, PapanikolaouS, AggelisG. Improving ethanol tolerance of Saccharomyces cerevisiae through adaptive laboratory evolution using high ethanol concentrations as a selective pressure. Process Biochem, 2023, 124: 280-9.

[55]

Kubota, S., Takeo, I., Kume, K., Kanai, M., Shitamukai, A., Mizunuma, M.,… Hirata,D. (2004). Effect of Ethanol on Cell Growth of Budding Yeast: Genes That Are Important for Cell Growth in the Presence of Ethanol. Bioscience, Biotechnology, and Biochemistry,68(4), 968–972. https://doi.org/10.1271/bbb.68.968.

[56]

Pérez-GallardoRV, BrionesLS, Díaz-PérezAL, GutiérrezS, Rodríguez-ZavalaJS, Campos-GarcíaJ. Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron–sulfur cluster assembly system. FEMS Yeast Res, 2013, 13(8): 804-19.

[57]

TomovaAA, VengelovaA, VentsislavaK, PetrovaY, KujumdzievaAV, PetrovaY. Carbon source influences Saccharomyces cerevisiae yeast cell survival strategies: quiescence or sporulation. Biotechnol Biotechnol Equip, 2019, 33(1): 1464-70.

[58]

TurcotteB, LiangXB, RobertF, SoontorngunN. Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Res, 2009, 10(1): 2-13.

[59]

MaestreO, García-MartínezT, PeinadoRA, MauricioJC. Effects of ADH2 overexpression in Saccharomyces bayanus during alcoholic fermentation. Appl Environ Microbiol, 2008, 74(3): 702-7.

[60]

BroachJR. Nutritional control of growth and development in yeast. Genetics, 2012, 192173.

[61]

GasmiN, JacquesPE, KlimovaN, GuoX, RicciardiA, RobertF, TurcotteB. The switch from fermentation to respiration in Saccharomyces cerevisiae is regulated by the Ert1 transcriptional activator/repressor. Genetics, 2014, 198(2): 547-60.

[62]

WeinhandlK, WinklerM, GliederA, CamattariA. Carbon source dependent promoters in yeasts. Microb Cell Fact, 2014, 13(1): 1-17.

[63]

BlandinoA, CaroI, CanteroD. Comparative study of alcohol dehydrogenase activity in Flor yeast extracts. Biotechnol Lett, 1997, 19(7): 651-4.

[64]

FernándezMaJ, Gómez-MorenoC, Ruiz-AmilM. Induction of isoenzymes of alcohol dehydrogenase in Flor yeast. Archiv Für Mikrobiologie, 1972, 84(2): 153-60.

[65]

PattisonTL, Von HolyA. Effect of selected natural antimicrobials on baker’s yeast activity. Lett Appl Microbiol, 2001, 33(3): 211-5.

[66]

Roca-mesaH, SendraS, MasA, BeltranG, TorijaMJ. Nitrogen preferences during alcoholic fermentation of different Non-Saccharomyces yeasts of oenological interest. Microorganisms, 2020, 82157.

[67]

Gobert, A., Tourdot-Maréchal, R., Morge, C., Sparrow, C., Liu, Y., Quintanilla-Casas,B.,… Alexandre, H. (2017). Non-Saccharomyces Yeasts nitrogen source preferences:Impact on sequential fermentation and wine volatile compounds profile. Frontiers in Microbiology, 8, 2175. https://doi.org/10.3389/FMICB.2017.02175/BIBTEX.

[68]

De AlmeidaAF, Taulk-TornisieloSM, CarmonaEC. Influence of carbon and nitrogen sources on lipase production by a newly isolated candida viswanathii strain. Ann Microbiol, 2013, 63(4): 1225-34.

[69]

Chen DC, Wang BD, Chou PY, Kuo TT. (2000). Asparagine as a nitrogen source for improving the secretion of mouse alpha-amylase in Saccharomyces cerevisiae protease A-deficient strains, 16(3), 207–217. https://doi.org/10.1002/(SICI)1097-0061(200002)16:3%3C207::AID-YEA518%3E3.0.CO;2-C

[70]

AlbersE, LarssonC, LidénG, NiklassonC, GustafssonL. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl Environ Microbiol, 1996, 6293187.

[71]

TaniN, YonedaK, SuzukiI. The effect of thiamine on the growth and fatty acid content of aurantiochytrium Sp. Algal Res, 2018, 36: 57-66.

[72]

CostaOYA, OguejioforC, ZühlkeD, BarretoCC, WünscheC, RiedelK, KuramaeEE. Impact of different trace elements on the growth and proteome of two strains of granulicella, class Acidobacteriia. Front Microbiol, 2020, 111227.

[73]

Stehlik-Tomas V, Zeti} VG, Stanzer D, Grba S, Vah ~ i} N. (2004). Zinc, Copper and Manganese Enrichment in Yeast Saccharomyces cerevisae. Food Technol. Biotechnol., 42(2), 115–120. Retrieved from https://hrcak.srce.hr/file/163285

[74]

KounbesiouM, SavadogoA, BarroN, ThonartP, SabadenedyA. Effect of minerals salts in fermentation process using Mango residues as carbon source for bioethanol production. Asian J Industrial Eng, 2010, 3(1): 29-38.

[75]

Di SerioM, AramoP, De AlteriisE, TesserR, SantacesariaE. Quantitative analysis of the key factors affecting yeast growth. Ind Eng Chem Res, 2003, 42(21): 5109-16.

[76]

WasunguKM, SimardRE. Growth characteristics of bakers’ yeast in ethanol. Biotechnol Bioeng, 1982, 24(5): 1125-34.

[77]

SalariR, SalariR. Investigation of the best Saccharomyces cerevisiae growth condition. Electron Physician, 2017, 913592.

[78]

PeñaA, SánchezNSilvi, ÁlvarezH, CalahorraM, RamírezJ. Effects of high medium pH on growth, metabolism and transport in Saccharomyces cerevisiae. FEMS Yeast Res, 2015, 1525.

[79]

FarhMEA, AbdellaouiN, SeoJA. pH changes have a profound effect on gene expression, hydrolytic enzyme production, and dimorphism in Saccharomycopsis fibuligera. Front Microbiol, 2021, 121606.

[80]

JonesRC, HoughJS. The effect of temperature on the metabolism of baker’s yeast growing on continuous culture. J Gen Microbiol, 1970, 60(1): 107-16.

[81]

KaderR, YousufA, HoqMM. Optimization of lipase production by a rhizopus MR12 in shake culture. J Appl Sci, 2007, 7(6): 855-60.

[82]

ZhangQ, WuD, LinY, WangX, KongH, TanakaS. Substrate and product Inhibition on yeast performance in ethanol fermentation. Energy Fuels, 2015, 29(2): 1019-27.

[83]

de Albuquerque Wanderley AC, Soares ML, Gouveia ER. (2014). Selection of inoculum size and Saccharomyces cerevisiae strain for ethanol production in simultaneous saccharification and fermentation (SSF) of sugar cane. African Journal of Biotechnology, 13(27). Retrieved from https://www.ajol.info/index.php/ajb/article/view/121085

[84]

Aydar AY, Aydar AY. (2018). Utilization of Response Surface Methodology in Optimization of Extraction of Plant Materials. Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes. https://doi.org/10.5772/INTECHOPEN.73690

[85]

SantosFG, MendonçaLA, MantovaniHC. A central composite rotatable design (CCRD) approach to study the combined effect of antimicrobial agents against bacterial pathogens. World J Microbiol Biotechnol, 2015, 31(9): 1361-7.

[86]

Manera AP, da Costa Ores J, Ribeiro A, Veiga Burkert V, C. A., Kalil SJ. (2008). Optimization of the Culture Medium for the Production of β-Galactosidase from Kluyveromyces marxianus CCT 7082. Food Technology and Biotechnology, 46(1), 66–72. Retrieved from https://hrcak.srce.hr/22222

[87]

YaacobN, AliM, SallehMS, Abdul RahmanNA. Effects of glucose, ethanol and acetic acid on regulation of ADH2 gene from lachancea fermentati. PeerJ, 2016, 4e1751.

[88]

Jiménez-MartíE, Del OlmoM. Addition of ammonia or amino acids to a nitrogen-depleted medium affects gene expression patterns in yeast cells during alcoholic fermentation. FEMS Yeast Res, 2008, 8(2): 245-56.

[89]

Thi Nguyen HY, Tran GB. (2018). Optimization of fermentation conditions and media for production of glucose isomerase from bacillus megaterium using response surface methodology. Scientifica, 2018. https://doi.org/10.1155/2018/6842843

[90]

Paradh AD, Waste. 175–94. https://doi.org/10.1016/B978-1-78242-331-7.00008-3

[91]

TaloriaD, SamantaS, DasS, PututundaC. Increase in bioethanol production by random UV mutagenesis of s.cerevisiae and by addition of zinc ions in the alcohol production media. APCBEE Procedia, 2012, 2: 43-9.

[92]

Nimbalkar, P. R., Khedkar, M. A., Parulekar, R. S., Chandgude, V. K., Sonawane, K.D., Prakash, ∥,… Bankar, S. B. (2018). Role of Trace Elements as Cofactor: An Efficient Strategy toward Enhanced Biobutanol Production. ACS Sustainable Chem. Eng, 6, 9304–9313. https://doi.org/10.1021/acssuschemeng.8b01611.

[93]

QiW, GuoHL, WangCL, HouLH, CaoXH, LiuJF, LuFP. Comparative study on fermentation performance in the genome shuffled Candida versatilis and wild-type salt tolerant yeast strain. J Sci Food Agric, 2017, 97(1): 284-90.

[94]

DackRE, BlackGW, KoutsidisG, UsherSJ. The effect of Maillard reaction products and yeast strain on the synthesis of key higher alcohols and esters in beer fermentations. Food Chem, 2017, 232: 595-601.

[95]

SaerensSMG, VerstrepenKJ, Van LaereSDM, VoetARD, Van DijckP, DelvauxFR, TheveleinJM. The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid Ethyl ester synthesis and hydrolysis capacity. J Biol Chem, 2006, 281(7): 4446-56.

[96]

WangP, LiB, LiB, YangJ, XuX, YangST, ZouX. Carbon-economic biosynthesis of poly-2-hydrobutanedioic acid driven by nonfermentable substrate ethanol. Green Chem, 2022, 24(17): 6599-612.

[97]

VriesekoopF, PammentNB. Acetaldehyde stimulation of the growth of Zymomonas mobilis subjected to ethanol and other environmental stresses: effect of other metabolic Electron acceptors and evidence for a mechanism. Fermentation, 2021, 7280.

[98]

IsomCE, NannyMA, TannerRS. Improved conversion efficiencies for n-fatty acid reduction to primary alcohols by the solventogenic acetogen Clostridium ragsdalei. J Ind Microbiol Biotechnol, 2015, 42(1): 29-38.

[99]

Hu Y, Zhu Z, Nielsen J, Siewers V. Engineering Saccharomyces cerevisiae cells for production of fatty acid-derived biofuels and chemicals. Open Biology. 2019;9(5). https://doi.org/10.1098/RSOB.190049.;JOURNAL:JOURNAL:RSOB;PAGEGROUP:STRING:PUBLICATION.

[100]

IwamaR, KobayashiS, OhtaA, HoriuchiH, FukudaR. Alcohol dehydrogenases and an alcohol oxidase involved in the assimilation of exogenous fatty alcohols in Yarrowia lipolytica. FEMS Yeast Res, 2015, 15(3): 1-12.

[101]

YuanHW, ZhangC, ChenSY, ZhaoY, TieY, YinLG, ZuoY. Effect of different moulds on oenological properties and flavor characteristics in rice wine. LWT, 2023, 173114201.

[102]

TangX, FengH, ChenWN. Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae. Metab Eng, 2013, 16(1): 95-102.

[103]

Gonzalez-Garcia RA, McCubbin T, Navone L, Stowers C, Nielsen LK, Marcellin E. (2017). Microbial Propionic Acid Production. Fermentation 2017, Vol. 3, Page 21, 3(2), 21. https://doi.org/10.3390/FERMENTATION3020021

[104]

PrabhuR, AltmanE, EitemanaMA. Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions. Appl Environ Microbiol, 2012, 78(24): 8564-70.

[105]

HanTL, TumanovS, CannonRD, Villas-BoasSG. Metabolic response of Candida albicans to phenylethyl alcohol under Hyphae-Inducing conditions. PLoS ONE, 2013, 88e71364.

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

269

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/