PDF
Abstract
Media engineering and strain improvement are critical aspects of microbial biotechnology playing a vital role in enhancing microbial productivity, and ensuring cost-effective bioprocessing. In this investigation, we optimized the various medium components, nutritional condition, and fermentation parameters for the industrial production of phenoxymethylpenicillin or penicillin V (PenV). We have isolated, characterized Penicillium rubens BIONCL P45 strain which initially produced 100 mg/L of PenV. Further, optimization using production medium 4 (PM4) comprising lactose, corn steep solids, sodium sulfate, calcium carbonate, and phenoxy acetic acid lead to a significant increase in production, reaching 430 mg/L. Further improvements through response surface methodology (RSM) predicted a production of 646 mg/L, which was experimentally validated at 685 mg/L. Subsequently, mutagenesis studies using UV (ultraviolet) exposure resulted in the UV-65 mutant, which demonstrated a superior performance, achieving 934 mg/L, surpassing the parental strain. These combined strategies lead to a tenfold increase in PenV titer, highlighting their effectiveness in bioprocess development and industrial-scale antibiotic production.
Keywords
Box-Behnken design
/
Response surface methodology
/
Media optimization
/
Penicillium rubens
/
Penicillin V
/
Classical strain improvement
Cite this article
Download citation ▾
Amol Muralidhar Sawant, Koteswara Rao Vamkudoth.
A comprehensive investigation on statistical approaches and classical strain improvement for penicillin V production by Penicillium rubens BIONCL P45 strain.
Systems Microbiology and Biomanufacturing, 2025, 5(3): 1302-1327 DOI:10.1007/s43393-025-00377-w
| [1] |
NiegoAGT, LambertC, MortimerP, et al.. The contribution of fungi to the global economy. Fungal Divers, 2023, 12: 95-137.
|
| [2] |
LobanovskaM, PillaG. Penicillin’s discovery and antibiotic resistance: lessons for the future?. Yale J Biol Med, 2017, 90: 135-145
|
| [3] |
HoubrakenJ, FrisvadJC, SamsonRA. Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus, 2011, 2: 87-95.
|
| [4] |
MeijerWH, GidijalaL, FekkenS, et al.. Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Microbiol, 2010, 76: 5702-5709.
|
| [5] |
RevillaG, LóPEZ-NIETOMJ, LuengoJM, MartinJF. Carbon catabolite repression of penicillin biosynthesis by Penicillium chrysogenum. J Antibiot, 1984, 37: 781-789.
|
| [6] |
HaasH, MarzlufGA. NRE, the major nitrogen regulatory protein of Penicillium chrysogenum, binds specifically to elements in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene clusters. Curr Genet, 1995, 28: 177-183.
|
| [7] |
Brakhage AA, Spröte P, Al-Abdallah Q, Gehrke A, Plattner H, Tüncher A. Regulation of penicillin biosynthesis in filamentous fungi. In: Molecular biotechnology of fungal beta-lactam antibiotics and related peptide synthetases. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. p. 45–90.
|
| [8] |
Urban-ChmielR, MarekA, Stępień-PyśniakD, et al.. Antibiotic resistance in bacteria—a review. Antibiotics, 2022, 111079.
|
| [9] |
QuinnR. Rethinking antibiotic research and development: world War II and the penicillin collaborative. Am J Public Health, 2013, 103: 426-434.
|
| [10] |
SawantAM, VamkudothKR. Biosynthetic process and strain improvement approaches for industrial penicillin production. Biotechnol Lett, 2022, 44: 179-192.
|
| [11] |
ChandelAK, RaoLV, NarasuML, SinghOV. The realm of penicillin G acylase in β-lactam antibiotics. Enzyme Microb Technol, 2008, 42: 199-207.
|
| [12] |
SawantAM, NavaleVD, VamkudothKR. Isolation and molecular characterization of indigenous Penicillium chrysogenum/rubens strain portfolio for penicillin V production. Microorganisms, 2023, 111132.
|
| [13] |
SharmaP, SinghL. Application of response surface analysis for biodegradation of azo reactive textile dye using Aspergillus foetidus. J Basic Microbiol, 2011, 52: 314-323.
|
| [14] |
FengT, ZhaoJ, ChuJ, WangY, ZhuangY. Statistical optimizing of medium for clavulanic acid production by Streptomyces clavuligerus using response surface methodology. Appl Biochem Biotechnol, 2021, 193: 3936-3948.
|
| [15] |
BayuoJ, AbukariMA, Pelig-BaKB. Optimization using central composite design (CCD) of response surface methodology (RSM) for biosorption of hexavalent chromium from aqueous media. Appl Water Sci, 2020.
|
| [16] |
ChenJ, LanX, JiaR, HuL, WangY. Response surface methodology (RSM) mediated optimization of medium components for mycelial growth and metabolites production of Streptomyces alfalfae XN-04. Microorganisms, 2022, 101854.
|
| [17] |
PongsumpunP, IwamotoS, SiripatrawanU. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrason Sonochem, 2020, 60. 104604
|
| [18] |
SteenselsJ, SnoekT, MeersmanE, NicolinoMP, VoordeckersK, et al.. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev, 2014, 38: 947-995.
|
| [19] |
JavedS, AsgherM, SheikhMA, NawazH. Strain improvement through UV and chemical mutagenesis for enhanced citric acid production in molasses-based solid state fermentation. Food Biotechnol, 2010, 24: 165-179.
|
| [20] |
BarreiroC, MartínJF, García-EstradaC. Proteomics shows new faces for the old penicillin producer Penicillium chrysogenum. J Biomed Biotechnol, 2012, 2012: 1-15.
|
| [21] |
ZhaoS, TanMZ, WangRX, YeFT, ChenYP, et al.. Combination of genetic engineering and random mutagenesis for improving production of raw-starch-degrading enzymes in Penicillium oxalicum. Microb Cell Fact, 2022.
|
| [22] |
HoH, HoK. Fungal strain improvement of Aspergillus brasiliensis for overproduction of xylanase in submerged fermentation through UV irradiation and chemicals mutagenesis. J Adv Biolo Biotechnol, 2015, 3: 117-131.
|
| [23] |
Salazar-CerezoS, de VriesRP, GarriguesS. Strategies for the development of industrial fungal producing strains. J Fungi, 2023, 9834.
|
| [24] |
SaloOV, RiesM, MedemaMH, LankhorstPP, VreekenRJ, et al.. Genomic mutational analysis of the impact of the classical strain improvement program on β–lactam producing Penicillium chrysogenum. BMC Genomics, 2015.
|
| [25] |
van den BergMA, AlbangR, AlbermannK, BadgerJH, DaranJM, et al.. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol, 2008, 26: 1161-1168.
|
| [26] |
JamiMS, BarreiroC, García-EstradaC, MartínJF. Proteome analysis of the penicillin producer Penicillium chrysogenum. Mol Cell Proteomics, 2010, 9: 1182-1198.
|
| [27] |
DayalanSAJ, DarwinP, PrakashS. Comparative study on production, purification of penicillin by Penicillium chrysogenum isolated from soil and citrus samples. Asian Pac J Trop Biomed, 2011, 1: 15-19.
|
| [28] |
Veerapagu M, Jeya KR, Ponmurugan K. Mutational effect of Penicillium chrysogenum on antibiotic production. Totowa: Advanced Biotech; 2008. p. 16.
|
| [29] |
KumarAK, ParikhBS, SinghSP, ShahD. Use of combined UV and chemical mutagenesis treatment of Aspergillus terreus D34 for hyper-production of cellulose-degrading enzymes and enzymatic hydrolysis of mild-alkali pretreated rice straw. Bioresour Bioprocess, 2015.
|
| [30] |
Onyegeme-OkerentaBM, OkochiVI, ChineduSN. Penicillin production by Penicillium chrysogenum PCL 501: Effect of UV induced mutation. Inter J Microbiol, 2013, 121
|
| [31] |
TornqvistEGM, PetersonWH. Penicillin production by high-yielding strains of Penicillium chrysogenum. Appl Microbiol, 1956, 4: 277-283.
|
| [32] |
NgerebaraNN, AmadiLO. Effects of various concentrations of lactose, lactic acid, corn steep liquor and sodium chloride on the growth of Penicillium notatum and penicillin production. J Chem Bio Phy Sci Sec, 2017, 7: 857-864
|
| [33] |
García-EstradaC, MartínJF, CuetoL, BarreiroC. Omics approaches applied to Penicillium chrysogenum and penicillin production: revealing the secrets of improved productivity. Genes, 2020, 11712.
|
| [34] |
PérezEA, FernándezFJ, FierroF, MejíaA, MarcosAT, MartínJF, Barrios-GonzálezJ. Yeast HXK2 gene reverts glucose regulation mutation of penicillin biosynthesis in P. chrysogenum. Braz J Microbiol, 2014, 45: 873-883.
|
| [35] |
Ngerebara NN, Amadi LO. Production of penicillin in corn steep media with continuous glucose, sucrose and lactose addition. JECET. 2017.6. https://doi.org/10.24214/jecet.a.6.3.20308.
|
| [36] |
KumarVV, VigneshwaranC, VasantharajK, IsaacJP, BharathirajB. Optimization of sugarcane bagasse, nutrient and temperature on the yield of penicillin V in solid state fermentation by Penicillium chrysogenum. Int J Biotechnol Biochem, 2010, 6: 477-483
|
| [37] |
ParameswariS, SivasankariS. Execution of enriched rice bran medium in hyper production of penicillin V by Penicillium chrysogenum. Waste Biomass Valoriz, 2017, 9: 1559-1565.
|
| [38] |
SolteroFV, JohnsonMJ. The effect of the carbohydrate nutrition on penicillin production by Penicillium chrysogenum Q-176. Appl Microbiol, 1953, 1: 52-57.
|
| [39] |
AffenzellerK, KubicekCP. Evidence for a compartmentation of penicillin biosynthesis in a high- and a low-producing strain of Penicillium chrysogenum. J Gen Microbiol, 1991, 137: 1653-1660.
|
| [40] |
CalamCT, HockenhullDJD. The production of penicillin in surface culture, using chemically defined media. J Gen Microbiol, 1949, 3: 19-31.
|
| [41] |
BhuyanBK, JohnsonMJ. The effect of medium constituents on penicillin production from natural materials. Appl Microbiol, 1957, 5: 262-267.
|
| [42] |
PirtSJ, RighelatoRC. Effect of growth rate on the synthesis of penicillin by Penicillium chrysogenum in batch and chemostat cultures. Appl Microbiol, 1967, 15: 1284-1290.
|
| [43] |
HoferA, HauerS, KrollP, FrickeJ, HerwigC. In-depth characterization of the raw material corn steep liquor and its bioavailability in bioprocesses of Penicillium chrysogenum. Process Biochem, 2018, 70: 20-28.
|
| [44] |
El-MarsafyM, Abdel-AkherM, El-SaiedH. Effect of media composition on the penicillin production. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene Zweite Naturwissenschaftliche Abteilung: Allgemeine, Landwirtschaftliche und Technische Mikrobiologie, 1977, 132: 117-122.
|
| [45] |
GopalakrishnanKK, DetchanamoorthyS. Effect of media sterilization time on penicillin G production and precursor utilization in batch fermentation. J Bioprocess Biotech, 2011.
|
| [46] |
ManagamuriU, VijayalakshmiM, PodaS, GanduriVSRK, BabuRS. Optimization of culture conditions by response surface methodology and unstructured kinetic modelling for bioactive metabolite production by Nocardiopsis litoralis VSM-8. 3 Biotech, 2016.
|
| [47] |
MandalV, GhoshNN, MitraPK, MandalS, MandalV. Production and characterization of a broad-spectrum antimicrobial 5-butyl-2-pyridine carboxylic acid from Aspergillus fumigatus nHF-01. Sci Rep, 2022.
|
| [48] |
ChaudharyE, RahiDK. Statistical optimization for the production of bioactive exopolysaccharide by Ganoderma gibbosum under submerged fermentation conditions and in-vitro evaluation of its antioxidant activity. Biologia, 2023, 78: 2611-2621.
|
| [49] |
DudejaS, ChhokarV, BeniwalV, BadgujjarH, ChauhanR, SoniS, KumarA. Optimization and production of antimicrobial compounds by Aspergillus flavus MTCC 13062 and its synergistic studies. Biocatal Agric Biotechnol, 2021, 35102065.
|
| [50] |
Ben MeftehF, FrikhaF, DaoudA, et al.. Response surface methodology optimization of an acidic protease produced by Penicillium bilaiae isolate TDPEF30, a newly recovered endophytic fungus from healthy roots of date palm trees (Phoenix dactylifera L.). Microorganisms, 2019, 774.
|
| [51] |
TrivediNS, ThumarJT. Statistical optimization for the production of antimicrobial compounds produced by mangrove endophytic Aspergillus sp. Indian J Sci Technol, 2023, 16: 1614-1623.
|
| [52] |
BackusMP, StaufferJF. The production and selection of a family of strains in Penicillium chrysogenum. Mycologia, 1955, 47429.
|
| [53] |
HardiantoD, PrabandariEE, WindriawatiL, MarwantaE. Penicillin production by mutant of Penicillium chrysogenum. JBBI, 2016, 215.
|
| [54] |
KonigB, SchugerlK, SeewaldC. Strategies for penicillin fermentation in tower–loop reactors. Biotechnol Bioeng, 1982, 24: 259-280.
|
| [55] |
PapagianniM. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv, 2004, 22: 189-259.
|
| [56] |
LeonardCA, BrownSD, HaymanJR. Random mutagenesis of the Aspergillus oryzae genome results in fungal antibacterial activity. Int J Microbiol, 2013, 2013: 1-5.
|
| [57] |
SawantAM, NavaleVD, VamkudothKR. Genome sequencing and analysis of penicillin V producing Penicillium rubens strain BIONCL P45 isolated from India. Int Microbiol, 2024, 27: 1473-1484.
|
| [58] |
PathakA, NowellRW, WilsonCG, RyanMJ, BarracloughTG. Comparative genomics of Alexander Fleming’s original Penicillium isolate (IMI 15378) reveals sequence divergence of penicillin synthesis genes. Sci Rep, 2020.
|
| [59] |
WuM, CrismaruCG, SaloO, BovenbergRAL, DriessenAJM. Impact of classical strain improvement of Penicillium rubens on amino acid metabolism during β-lactam production. Appl Environ Microbiol, 2020.
|
Funding
Council of Scientific and Industrial Research, India(MLP101126)
RIGHTS & PERMISSIONS
Jiangnan University