Antibiotic resistance profiling and comparative genomics of cold-adapted Staphylococcus saprophyticus from the Southern Ocean

Shikha Sharma , Abhishek Chauhan , Anuj Ranjan , Rajpal Srivastav , Ritu Chauhan , Vivek Narayan Singh , Tanu Jindal

Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (4) : 1593 -1608.

PDF
Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (4) : 1593 -1608. DOI: 10.1007/s43393-025-00374-z
Original Article
research-article

Antibiotic resistance profiling and comparative genomics of cold-adapted Staphylococcus saprophyticus from the Southern Ocean

Author information +
History +
PDF

Abstract

This study provides the first comprehensive analysis of antibiotic resistance & genomic characterization of Staphylococcus saprophyticus isolated from Southern Ocean. Antibiotic susceptibility profiling of S. saprophyticus revealed complete resistance to Cefixime, Norfloxacin, Azithromycin, and Metronidazole, while susceptibility was observed for Ampicillin, Doxycycline, Tetracycline, Ciprofloxacin, and Co-trimoxazole. Whole-genome sequencing and comparative genomics analysis with 21 closely related strains identified antimicrobial resistance (AMR) genes viz a viz vanY (in the vanM cluster), sdrM, sepA, norC, salE, fusD, and fosBx1. Among these, vanY exhibited the highest prevalence, followed by sdrM and sepA. Study also showed varying AMR gene distributions, with some strains harboring all seven resistance genes. The presence of antibiotic-resistant S. saprophyticus in the Southern Ocean highlights the potential anthropogenic influence on microbial communities leading to AMR among native microbial communities and highlights the urgent need for further studies on AMR in remote marine environments and its mitigation strategies. The study enhances understanding of the global dissemination of AMR by investigating S. saprophyticus in one of the pristine and isolated ecosystems on Earth. Our findings demonstrates that even remote environments are not immune to the spread of AMR. Furthermore, the study provides crucial insights into resistance mechanisms and the identification of resistance genes in a non-clinical, extreme environment puts light on microbial adaptability, and ecological resilience in response to environmental stressors.

Keywords

Antibiotic resistance / Staphylococcus saprophyticus / Southern ocean / Comparative genomics / AMR genes

Cite this article

Download citation ▾
Shikha Sharma, Abhishek Chauhan, Anuj Ranjan, Rajpal Srivastav, Ritu Chauhan, Vivek Narayan Singh, Tanu Jindal. Antibiotic resistance profiling and comparative genomics of cold-adapted Staphylococcus saprophyticus from the Southern Ocean. Systems Microbiology and Biomanufacturing, 2025, 5(4): 1593-1608 DOI:10.1007/s43393-025-00374-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Silva V, Caniça M, Capelo JL, Igrejas G, Poeta P. Diversity and genetic lineages of environmental staphylococci: a surface water overview. FEMS Microbiol Ecol, 2020, 96(12): fiaa191.

[2]

WHO Bacterial Priority Pathogens List, 2024; accessed on 13.06.2024

[3]

Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MA. Antimicrobial resistance: a growing serious threat for global public health. Healthcare, 2023, 11(13): 1946.

[4]

Harikumar G, Krishanan K. The growing menace of drug resistant pathogens and recent strategies to overcome drug resistance: a review. J King Saud Univ-Sci, 2022, 34(4. 101979

[5]

Gajdács M, Urbán E, Stájer A, Baráth Z. Antimicrobial resistance in the context of the sustainable development goals: a brief review. Eur J Investig Health Psychol Edu, 2021, 11(1): 71-82

[6]

Talley, L. D., Pickard, G. L., Emery, W. J., Swift, J. H. (2011). Southern ocean. Descriptive physical oceanography, Elsevier 437–471.

[7]

Riihelä A, Bright RM, Anttila K. Recent strengthening of snow and ice albedo feedback driven by Antarctic sea-ice loss. Nat Geosci, 2021, 14(11): 832-836.

[8]

Antimicrobial Resistance from Environmental Pollution Among Biggest Emerging Health Threats, Says UN Environment. 2017. https://www.unep.org/news-and-stories/press-release/antimicrobial-resistance-environmental-pollution-among-biggest, last accessed on June, 2024.

[9]

Depta J, Niedźwiedzka-Rystwej P. The phenomenon of antibiotic resistance in the polar regions: an overview of the global problem. Infect Drug Resist, 2023.

[10]

Aronson RB, Thatje S, McClintock JB, Hughes KA. Anthropogenic impacts on marine ecosystems in Antarctica. Ann N Y Acad Sci, 2011, 1223(1): 82-107.

[11]

Smith, J. J., Riddle, M. J. (2009) Sewage disposal and wildlife health in Antarctica. Health of Antarctic wildlife: A challenge for science and policy, 271–315.

[12]

Gutiérrez J, González-Acuña D, Fuentes-Castillo D, Fierro K, Hernández C, Zapata L, Verdugo C. Antibiotic resistance in wildlife from Antarctic Peninsula. Sci Total Environ, 2024, 916. 170340

[13]

Scott LC, Lee N, Aw TG. Antibiotic resistance in minimally human-impacted environments. Int J Environ Res Public Health, 2020, 17(11): 3939.

[14]

Dong N, Li HR, Yuan M, Zhang XH, Yu Y. Deinococcus antarcticus sp. nov., isolated from soil. Int J of Syst Evolut Microbiol, 2015, 65: 331-335.

[15]

Pawlowski AC, Wang W, Koteva K, Barton HA, McArthur AG, Wright GD. A diverse intrinsic antibiotic resistome from a cave bacterium. Nat Commun, 2016, 7(1): 13803.

[16]

Bengtsson-Palme J, Kristiansson E, Larsson DJ. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev, 2018, 42(1): sfux053.

[17]

Kudinova AG, Soina VS, Maksakova SA, Petrova MA. Basic antibiotic resistance of bacteria isolated from different biotopes. Microbiology, 2019, 88: 739-746.

[18]

Mogrovejo DC, Perini L, Gostinčar C, Sepčić K, Turk M, Ambrožič-Avguštin J, Gunde-Cimerman N. Prevalence of antimicrobial resistance and hemolytic phenotypes in culturable arctic bacteria. Front Microbiol, 2020, 11: 570.

[19]

Brauge T, Bourdonnais E, Trigueros S, Cresson P, Debuiche S, Granier SA, Midelet G. Antimicrobial resistance and geographical distribution of Staphylococcus sp. isolated from whiting (Merlangius merlangus) and seawater in the english channel and the North sea. Environ Poll, 2024, 345: 123434.

[20]

Yuan KE, Yu KE, Yang R, Zhang Q, Yang Y, Chen E, Chen B. Metagenomic characterization of antibiotic resistance genes in Antarctic soils. Ecotoxicol Environ Safety, 2019, 176: 300-308.

[21]

Djawadi, B., Heidari, N., Mohseni, M. (2023). UTI Caused by Staphylococcus Saprophyticus.

[22]

Natsis NE, Cohen PR. Coagulase-negative Staphylococcus skin and soft tissue infections. Am J Clin Dermatol, 2018, 19: 671-677.

[23]

Lala, V., Leslie, S. W., & Minter, D. A. (2023). Acute cystitis. In StatPearls [Internet]. StatPearls Publishing.

[24]

Hur J, Lee A, Hong J, Jo WY, Cho OH, Kim S, Bae IG. Staphylococcus saprophyticus bacteremia originating from urinary tract infections: a case report and literature review. Infect Chemother, 2016, 48(2): 136.

[25]

Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol, 2015, 13(5): 269-284.

[26]

Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev, 2014, 27(4): 870-926.

[27]

Sommers C, Sheen S, Scullen OJ, Mackay W. Inactivation of Staphylococcus saprophyticus in chicken meat and purge using thermal processing, high pressure processing, gamma radiation, and ultraviolet light (254 nm). Food Control, 2017, 75: 78-82.

[28]

Silva V, Ferreira E, Manageiro V, Reis L, Tejedor-Junco MT, Sampaio A, Poeta P. Distribution and clonal diversity of Staphylococcus aureus and other staphylococci in surface waters: detection of ST425-t742 and ST130-t843 mec C-positive MRSA strains. Antibiotics, 2021, 10(11): 1416.

[29]

Sousa VSD, da Silva APDS, Sorenson L, Paschoal RP, Rabello RF, Campana EH, Moreira BM. Staphylococcus saprophyticus recovered from humans, food, and recreational waters in Rio de Janeiro, Brazil. Int J Microbiol, 2017, 2017(1): 4287547

[30]

Calisto N, Navarro L, Iribarren C, Orellana P, Gómez C, Salazar L, Corsini G. Characterization of antibiotic-resistance antarctic pseudomonas that produce bacteriocin-like compounds. Microorganisms, 2024, 12(3): 530.

[31]

Chauhan, A., Jindal, T. (2020) Microbiological methods for environment, food and pharmaceutical analysis. Springer Nature.

[32]

CLSI. 2021. M100. Performance standards for antimicrobial susceptibility testing. 31st ed. Clinical and Laboratory Standards Institute, Wayne, PA.

[33]

Haruna I, Usman NI, Adamu A. Molecular identification of psychrotropic bacteria from antarctic soil. Bima J Sci Technol, 2021, 5(02): 68-74

[34]

Arora J, Chauhan A, Ranjan A, Rajput VD, Minkina T, Zhumbei AI, Prasad R. Degradation of SDS by psychrotolerant Staphylococcus saprophyticus and Bacillus pumilus isolated from Southern Ocean water samples. Brazilian J Microbiol, 2024, 55: 1507.

[35]

Gupta P, Balaji R, Parani M, Chandra TS, Shukla P, Kumar A, Bandopadhyay R. Phylogenetic analysis and biological characteristic tests of marine bacteria isolated from Southern Ocean (Indian sector) water. Acta Oceanol Sin, 2015, 34(8): 73-82.

[36]

Sundaresan AK, Vincent K, Mohan GBM, Ramakrishnan J. Association of sequence types, antimicrobial resistance and virulence genes in Indian isolates of Klebsiella pneumoniae: a comparative genomics study. J Global Antimicrob Resist, 2022, 30: 431-441.

[37]

Stephen J, Salam F, Lekshmi M, Kumar SH, Varela MF. The major facilitator superfamily and antimicrobial resistance efflux pumps of the ESKAPEE pathogen Staphylococcus aureus. Antibiotics, 2023, 12(2): 343.

[38]

Costa SS, Viveiros M, Amaral L, Couto I. Multidrug efflux pumps in Staphylococcus aureus: an update. Open Microbiol Ournal, 2013, 7: 59.

[39]

Ugoeze K, Alalor C, Ibezim C, Chinko B, Owonaro P, Anie C, Ndukwu G. Environmental and human health impact of antibiotics waste mismanagement: a review. Adv Environ Eng Res, 2024, 5(1): 1-21.

[40]

Marshall-Jones ZV, Patel KV, Castillo-Fernandez J, Lonsdale ZN, Haydock R, Staunton R, Watson P. Conserved signatures of the canine faecal microbiome are associated with metronidazole treatment and recovery. Scientific Rep, 2024, 14(1): 5277.

[41]

Sharma S, Chauhan A, Ranjan A, Mathkor DM, Haque S, Ramniwas S, Yadav V. Emerging challenges in antimicrobial resistance: implications for pathogenic microorganisms, novel antibiotics, and their impact on sustainability. Front Microbiol, 2024, 15: 1403168.

[42]

Lykov IN, Volodkin VS. Presence of antibiotic-resistant bacteria in the environment. In IOP Conf Series: Earth Environ Sci, 2021, 677(5): 052044

[43]

Chown SL, Clarke A, Fraser CI, Cary SC, Moon KL, McGeoch MA. The changing form of Antarctic biodiversity. Nature, 2015, 522(7557): 431-438.

[44]

Cong B, Yin X, Deng A, Shen J, Tian Y, Wang S, Yang H. Diversity of cultivable microbes from soil of the fildes Peninsula, Antarctica, and their potential application. Front Microbiol, 2020, 11. 570836

[45]

Murphy EJ, Johnston NM, Hofmann EE, Phillips RA, Jackson JA, Constable AJ, Xavier JC. Global connectivity of Southern Ocean ecosystems. Front Ecol Evol, 2021, 9: 624451.

[46]

Convey P, Peck LS. Antarctic environmental change and biological responses. Sci Adv, 2019, 5(11): eaaz0888.

[47]

Vodopivez C, Curtosi A, Villaamil E, Smichowski P, Pelletier E, Mac Cormack WP. Heavy metals in sediments and soft tissues of the Antarctic clam laternula elliptica: more evidence as a? possible biomonitor of coastal marine pollution at high latitudes?. Sci Total Environ, 2015, 502: 375-384.

[48]

de Souza Petersen E, de Araujo J, Krüger L, Seixas MM, Ometto T, Thomazelli LM, Petry MV. First detection of avian influenza virus (H4N7) in Giant Petrel monitored by geolocators in the Antarctic region. Marine Biol, 2017, 164: 1-9.

[49]

Hernández J, González-Acuña D. Anthropogenic antibiotic resistance genes mobilization to the polar regions. Infect Ecol Epidemiol, 2016, 6(1): 32112

[50]

Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol, 2014, 12(7): 465-478.

[51]

Lamba M, Graham DW, Ahammad SZ. Hospital wastewater releases of carbapenem-resistance pathogens and genes in urban India. Environ Sci Technol, 2017, 51: 13906-13912.

[52]

Chen B, Lin L, Fang L, Yang Y, Chen E, Yuan K. et al.. Complex pollution of antibiotic resistance genes due to beta-lactam and aminoglycoside use in aquaculture farming. Water Res, 2018, 134: 200-208.

[53]

Sanganyado E, Gwenzi W. Antibiotic resistance in drinking water systems: occurrence, removal, and human health risks. Sci Total Environ, 2019, 669: 785-797.

[54]

Kaiser RA, Polk JS, Datta T, Parekh RR, Agga GE. Occurrence of antibiotic resistant bacteria in urban karst groundwater systems. Water, 2022, 14: 960.

[55]

Michaelis C, Grohmann E. Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics, 2023, 12: 328.

[56]

Coppola D, Lauritano C, Zazo G, Nuzzo G, Fontana A, Ianora A, Giordano D. Biodiversity of UV-resistant bacteria in Antarctic aquatic environments. J Marine Sci Eng, 2023, 11(5): 968.

[57]

Goodwin KD, McNay M, Cao Y, Ebentier D, Madison M, Griffith JF. A multi-beach study of Staphylococcus aureus, MRSA, and enterococci in seawater and beach sand. Water Res, 2012, 46(13): 4195-4207.

[58]

Akanbi OE, Njom HA, Fri J, Otigbu AC, Clarke AM. Antimicrobial susceptibility of Staphylococcus aureus isolated from recreational waters and beach sand in Eastern Cape Province of South Africa. Int J Environ Res Public Health, 2017, 14(9): 1001.

[59]

Marti E, Variatza E, Balcazar JL. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol, 2014, 22(1): 36-41.

[60]

Bourdonnais E, Colcanap D, Le Bris C, Brauge T. Occurrence of indicator genes of antimicrobial resistance contamination in the English Channel and North Sea sectors and interactions with environmental variables. Front Microbiol, 2022, 13. 883081

[61]

Bourdonnais E, Le Bris C, Brauge T, Midelet G. Tracking antimicrobial resistance indicator genes in wild flatfish from the English Channel and the North Sea area: a one health concern. Environ Pollut, 2024, 343. 123274

[62]

Stalder T, Barraud O, Casellas M, Dagot C, Ploy MC. Integron involvement in environmental spread of antibiotic resistance. Front Microbiol, 2012, 3: 119.

[63]

Ferreira AM, Bonesso MF, Mondelli AL, Camargo CH, Cunha MDLR. Oxacillin resistance and antimicrobial susceptibility profile of Staphylococcus saprophyticus and other staphylococci isolated from patients with urinary tract infection. Chemotherapy, 2013, 58(6): 482-491.

[64]

Hashemzadeh M, Dezfuli AAZ, Nashibi R, Jahangirimehr F, Akbarian ZA. Study of biofilm formation, structure and antibiotic resistance in Staphylococcus saprophyticus strains causing urinary tract infection in women in Ahvaz. Iran New Microbes New Infections, 2021, 39. 100831

[65]

Ehlers, Sarah, and Stefan A. Merrill. "Staphylococcus saprophyticus infection"2018

[66]

Argemi X, Hansmann Y, Prola K, Prévost G. Coagulase-negative staphylococci pathogenomics. Int J Mol Sci, 2019, 20(5): 1215.

[67]

Pinault L, Chabrière E, Raoult D, Fenollar F. Direct identification of pathogens in urine by use of a specific matrix-assisted laser desorption ionization–time of flight spectrum database. J Clin Microbiol, 2019, 57(4): 10-1128.

[68]

Fergestad ME, Stamsås GA, Morales Angeles D, Salehian Z, Wasteson Y, Kjos M. Penicillin-binding protein PBP2a provides variable levels of protection toward different β-lactams in Staphylococcus aureus RN4220. Microbiologyopen, 2020, 9(8. e1057

[69]

Wielders CLC, Fluit AC, Brisse S, Verhoef J, Schmitz F. mecA gene is widely disseminated in Staphylococcus aureus population. J Clin Microbiol, 2002, 40(11): 3970-3975.

[70]

Wang Y, Zhang W, Wang J, Wu C, Shen Z, Fu X, Shen J. Distribution of the multidrug resistance gene cfr in Staphylococcus species isolates from swine farms in China. Antimicrob Agents Chemother, 2012, 56(3): 1485-1490.

[71]

Wipf JR, Schwendener S, Perreten V. The novel macrolide-lincosamide-streptogramin B resistance gene erm (44) is associated with a prophage in Staphylococcus xylosus. Antimicrob Agents Chemother, 2014, 58(10): 6133-6138.

[72]

Wendlandt S, Heß S, Li J, Feßler AT, Wang Y, Kadlec K, Schwarz S. Detection of the macrolide-lincosamide-streptogramin B resistance gene erm (44) and a novel erm (44) variant in staphylococci from aquatic environments. FEMS Microbiol Ecol, 2015, 91(8): fiv090.

[73]

Feßler AT, Wang Y, Wu C, Schwarz S. Mobile macrolide resistance genes in staphylococci. Plasmid, 2018, 99: 2-10.

[74]

Tam HK, Wong CMVL, Yong ST, Blamey J, González M. Multiple-antibiotic-resistant bacteria from the maritime Antarctic. Polar Biol, 2015, 38: 1129-1141.

[75]

Miller RV, Gammon K, Day MJ. Antibiotic resistance among bacteria isolated from seawater and penguin fecal samples collected near Palmer Station. Antarctica Canadian J Microbiol, 2009, 55(1): 37-45.

[76]

Sunde M, Ramstad SN, Rudi K, Porcellato D, Ravi A, Ludvigsen J, Telke AA. Plasmid-associated antimicrobial resistance and virulence genes in Escherichia coli in a high arctic reindeer subspecies. J Global Antimicrob Resist, 2021, 26: 317-322.

[77]

Jead MR, Mohammed RK. Detection of lmrS, mepA, norC genes among Staphylococcus Aureus Isolates. Int J Pharm Res, 2020, 12(1): 1471

[78]

Chua KY, Yang M, Wong L, Knox J, Lee LY. Antimicrobial resistance and its detection in Staphylococcus saprophyticus urinary isolates. Pathology, 2023, 55(7): 1013-1016.

[79]

Nobrega DB, Naushad S, Naqvi SA, Condas LA, Saini V, Kastelic JP, Barkema HW. Prevalence and genetic basis of antimicrobial resistance in non-aureus staphylococci isolated from Canadian dairy herds. Front Microbiol, 2018, 9: 256.

[80]

Safarpoor Dehkordi F, Gandomi H, Basti AA, Misaghi A, Rahimi E. Phenotypic and genotypic characterization of antibiotic resistance of methicillin-resistant Staphylococcus aureus isolated from hospital food. Antimicrob Resist Infect Control, 2017, 6: 1-11.

[81]

de Paiva-Santos W, de Sousa VS, Giambiagi-deMarval M. Occurrence of virulence-associated genes among Staphylococcus saprophyticus isolated from different sources. Microb Pathog, 2018, 119: 9-11.

[82]

Pantůček R, Sedláček I, Indráková A, Vrbovská V, Mašlaňová I, Kovařovic V, Doškař J. Staphylococcus edaphicus sp. nov., isolated in Antarctica, harbors the mecC gene and genomic islands with a suspected role in adaptation to extreme environments. Appl Environ Microbiol, 2018, 84(2): e01746-17.

[83]

Rao S, Linke L, Magnuson R, Jauch L, Hyatt DR. Antimicrobial resistance and genetic diversity of Staphylococcus aureus collected from livestock, poultry and humans. One Health, 2022, 15. 100407

[84]

Osada M, Aung MS, Urushibara N, Kawaguchiya M, Ohashi N, Hirose M, Kobayashi N. Prevalence and antimicrobial resistance of Staphylococcus aureus and coagulase-negative Staphylococcus/Mammaliicoccus from retail ground meat: Identification of broad genetic diversity in fosfomycin resistance gene fosB. Pathogens, 2022, 11(4): 469.

[85]

Khasapane NG, Koos M, Nkhebenyane SJ, Khumalo ZT, Ramatla T, Thekisoe O. Detection of staphylococcus isolates and their antimicrobial resistance profiles and virulence genes from subclinical mastitis cattle milk using MALDI-TOF MS, PCR and sequencing in free state province. South Africa Animals, 2024, 14(1): 154

[86]

Ouoba LII, Mbozo ABV, Anyogu A, Obioha PI, Lingani-Sawadogo H, Sutherland JP, Ghoddusi HB. Environmental heterogeneity of Staphylococcus species from alkaline fermented foods and associated toxins and antimicrobial resistance genetic elements. Int J Food Microbiol, 2019, 311: 108356.

[87]

Dziri R, Klibi N, Lozano C, Said LB, Bellaaj R, Tenorio C, Torres C. High prevalence of Staphylococcus haemolyticus and Staphylococcus saprophyticus in environmental samples of a Tunisian hospital. Diagnostic Microbiol Infectious Disease, 2016, 85(2): 136-140.

[88]

Arenas FA, Pugin B, Henríquez NA, Arenas-Salinas MA, Díaz-Vásquez WA, Pozo MF, Vásquez CC. Isolation, identification and characterization of highly tellurite-resistant, tellurite-reducing bacteria from Antarctica. Polar Sci, 2014, 8(1): 40-52.

[89]

Vrbovská V, Sedláček I, Zeman M, Švec P, Kovařovic V, Šedo O, Pantůček R. Characterization of Staphylococcus intermedius group isolates associated with animals from Antarctica and emended description of Staphylococcus delphini. Microorganisms, 2020, 8(2): 204.

[90]

Fujii T. Temporal variation in environmental conditions and the structure of fish assemblages around an offshore oil platform in the North Sea. Mar Environ Res, 2015, 108: 69-82.

[91]

Brinkmeyer R. Diversity of bacteria in ships ballast water as revealed by next generation DNA sequencing. Mar Pollut Bull, 2016, 107(1): 277-285.

[92]

Lv B, Cui Y, Tian W, Wei H, Chen Q, Liu B, Xie B. Vessel transport of antibiotic resistance genes across oceans and its implications for ballast water management. Chemosphere, 2020, 253: 126697.

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

340

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/