Functional characterization of SgnI: a type II thioesterase critical for natamycin biosynthesis in Streptomyces gilvosporeus

Wenli Yu , Runyi Huang , Wenchi Zhang , Rongzhen Zhang

Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (4) : 1513 -1524.

PDF
Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (4) : 1513 -1524. DOI: 10.1007/s43393-025-00369-w
Original Article
research-article

Functional characterization of SgnI: a type II thioesterase critical for natamycin biosynthesis in Streptomyces gilvosporeus

Author information +
History +
PDF

Abstract

Two types of thioesterases are commonly found in natural product biosynthetic clusters: type I thioesterases, which release the final product from the biosynthetic complex, and type II thioesterases, which ensure biosynthetic fidelity by editing aberrant acyl carrier protein intermediates. In this study, we analyzed the structure and kinetic feature of SgnI, a type II thioesterase from the modular polyketide synthase natamycin biosynthetic cluster. Steady-state kinetic results revealed that SgnI preferentially hydrolyzes malonyl-CoA, with kcat/Km values that are 17.7-fold, 5.08-fold, and 1.30-fold higher compared to those for ethylmalonyl-CoA, acetyl-CoA, and methylmalonyl-CoA, respectively. This confirms that SgnI functions as an editing thioesterase. Furthermore, SgnI was shown to hydrolyze malonyl units from the phosphopantetheine arm of various acyl carrier domains. Structural modeling of SgnI revealed a wedge-shaped hydrophobic substrate-binding cleft, which restricts substrate size. To elucidate the molecular mechanisms underlying SgnI’s substrate specificity, molecular dynamics simulations were conducted on the SgnI-malonyl-CoA and SgnI-ethylmalonyl-CoA complexes. The smaller active site pocket of the SgnI-malonyl-CoA complex, coupled with enhanced interactions between active site residues and malonyl-CoA, likely contributes to its higher catalytic efficiency in hydrolyzing malonyl-CoA. These findings advance our understanding of thioesterase specificity and pave the way for engineering trans-acting thioesterases for use in biosynthetic assembly lines.

Keywords

Thioesterase / Catalytic mechanism / Molecular dynamics simulations

Cite this article

Download citation ▾
Wenli Yu, Runyi Huang, Wenchi Zhang, Rongzhen Zhang. Functional characterization of SgnI: a type II thioesterase critical for natamycin biosynthesis in Streptomyces gilvosporeus. Systems Microbiology and Biomanufacturing, 2025, 5(4): 1513-1524 DOI:10.1007/s43393-025-00369-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Keatinge-Clay AT. The uncommon enzymology of Cis-Acyltransferase assembly lines. Chem Rev, 2017, 117(8): 5334-66.

[2]

Zhang JJ, Tang X, Huan T, Ross AC, Moore BS. Pass-back chain extension expands multimodular assembly line biosynthesis. Nat Chem Biol, 2020, 16(1): 42-9.

[3]

Peng H, Ishida K, Sugimoto Y, Jenke-Kodama H, Hertweck C. Emulating evolutionary processes to morph aureothin-type modular polyketide synthases and associated oxygenases. Nat Commun, 2019, 10(1): 3918.

[4]

Thongkawphueak T, Winter AJ, Williams C, Maple HJ, Soontaranon S, Kaewhan C, Campopiano DJ, Crump MP. Wattana-Amorn, solution structure and conformational dynamics of a doublet acyl carrier protein from prodigiosin biosynthesis. Biochemistry, 2021, 60(3): 219-30.

[5]

Lohman JR, Ma M, Osipiuk J, Nocek B, Kim Y, Chang C, Cuff M, Mack J, Bigelow L, Li H, Endres M, Babnigg G, Joachimiak A, Phillips GNJr, Shen B. Structural and evolutionary relationships of AT-less type I polyketide synthase ketosynthases. Proc Natl Acad Sci U S A, 2015, 112(41): 12693-8.

[6]

Herbst DA, Jakob RP, Zahringer F, Maier T. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases. Nature, 2016, 531(7595): 533-7.

[7]

Tang YY, Kim CY, Mathews II, Cane DE, Khosla C. The 2.7-Å crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase. P Natl Acad Sci USA, 2006, 103(30): 11124-9.

[8]

Li X, Sevillano N, La Greca F, Deis L, Liu YC, Deller MC, Mathews II, Matsui T, Cane DE, Craik CS, Khosla C. Structure-Function analysis of the extended conformation of a polyketide synthase module. J Am Chem Soc, 2018, 140(21): 6518-21.

[9]

Chen XP, Shi T, Wang XL, Wang JT, Chen QH, Bai LQ, Zhao YL. Theoretical studies on the mechanism of Thioesterase-Catalyzed macrocyclization in erythromycin biosynthesis. ACS Catal, 2016, 6(7): 4369-78.

[10]

Kotowska M, Pawlik K. Roles of type II thioesterases and their application for secondary metabolite yield improvement. Appl Microbiol Biot, 2014, 98(18): 7735-46.

[11]

Ohlemacher SI, Xu Y, Kober DL, Malik M, Nix JC, Brett TJ, Henderson JP. YbtT is a low-specificity type II thioesterase that maintains production of the metallophore Yersiniabactin in pathogenic Enterobacteria. J Biol Chem, 2018, 293(51): 19572-85.

[12]

Zhou Y, Meng Q, You D, Li J, Chen S, Ding D, Zhou X, Zhou H, Bai L, Deng Z. Selective removal of aberrant extender units by a type II thioesterase for efficient FR-008/candicidin biosynthesis in Streptomyces Sp. strain FR-008. Appl Environ Microbiol, 2008, 74(23): 7235-42.

[13]

Wang YY, Ran XX, Chen WB, Liu SP, Zhang XS, Guo YY, Jiang XH, Jiang H, Li YQ. Characterization of type II thioesterases involved in Natamycin biosynthesis in Streptomyces chattanoogensis L10. FEBS Lett, 2014, 588(17): 3259-64.

[14]

Claxton HB, Akey DL, Silver MK, Admiraal SJ, Smith JL. Structure and functional analysis of RifR, the type II thioesterase from the rifamycin biosynthetic pathway. J Biol Chem, 2009, 284(8): 5021-9.

[15]

Klaus M, Buyachuihan L, Grininger M. Ketosynthase domain constrains the design of polyketide synthases. ACS Chem Biol, 2020, 15(9): 2422-32.

[16]

Yi D, Acharya A, Gumbart JC, Gutekunst WR, Agarwal V. Gatekeeping ketosynthases dictate initiation of assembly line biosynthesis of pyrrolic polyketides. J Am Chem Soc, 2021, 143(20): 7617-22.

[17]

Whicher JR, Florova G, Sydor PK, Singh R, Alhamadsheh M, Challis GL, Reynolds KA, Smith JL. Structure and function of the RedJ protein, a thioesterase from the prodiginine biosynthetic pathway in Streptomyces coelicolor. J Biol Chem, 2011, 286(25): 22558-69.

[18]

Tsai SC, Miercke LJ, Krucinski J, Gokhale R, Chen JC, Foster PG, Cane DE, Khosla C, Stroud RM. Crystal structure of the macrocycle-forming thioesterase domain of the erythromycin polyketide synthase: versatility from a unique substrate channel. Proc Natl Acad Sci U S A, 2001, 98(26): 14808-13.

[19]

Curran SC, Pereira JH, Baluyot MJ, Lake J, Puetz H, Rosenburg DJ, Adams P, Keasling JD. Structure and function of BorB, the type II thioesterase from the Borrelidin biosynthetic gene cluster. Biochemistry, 2020, 59(16): 1630-9.

[20]

Koglin A, Lohr F, Bernhard F, Rogov VV, Frueh DP, Strieter ER, Mofid MR, Guntert P, Wagner G, Walsh CT, Marahiel MA, Dotsch V. Structural basis for the selectivity of the external thioesterase of the surfactin synthetase. Nature, 2008, 454(7206): 907-11.

[21]

Aparicio JF, Colina AJ, Ceballos E, Martin JF. The biosynthetic gene cluster for the 26-membered ring polyene macrolide Pimaricin. A new polyketide synthase organization encoded by two subclusters separated by functionalization genes. J Biol Chem, 1999, 274(15): 10133-9.

[22]

Mendes MV, Recio E, Fouces R, Luiten R, Martin JF, Aparicio JF. Engineered biosynthesis of novel polyenes: a Pimaricin derivative produced by targeted gene disruption in Streptomyces natalensis. Chem Biol, 2001, 8(7): 635-44.

[23]

Huang R, Yu W, Zhang R, Xu Y. Efficient synthesis of malonyl-CoA by an acyl-CoA synthetase from Streptomyces Sp. Process Biochem, 2023, 135: 50-60.

[24]

Miyazawa T, Hirsch M, Zhang Z, Keatinge-Clay AT. An in vitro platform for engineering and Harnessing modular polyketide synthases. Nat Commun, 2020, 11(1): 80.

[25]

Dunn BJ, Cane DE, Khosla C. Mechanism and specificity of an acyltransferase domain from a modular polyketide synthase. Biochemistry, 2013, 52(11): 1839-41.

[26]

Xi Z, Xu Y, Liu Z, Zhang X, Zhu Q, Li L, Zhang R. Enhanced synthesis of Chloramphenicol intermediate L-threo-p-nitrophenylserine using engineered L-threonine transaldolase and by-product elimination. Int J Biol Macromol, 2024, 263(Pt 2): 130310.

[27]

Yeh E, Kohli RM, Bruner SD, Walsh CT. Type II thioesterase restores activity of a NRPS module stalled with an aminoacyl-enzyme that cannot be elongated. ChemBioChem, 2004, 5(9): 1290-3.

[28]

Kim BS, Cropp TA, Beck BJ, Sherman DH, Reynolds KA. Biochemical evidence for an editing role of thioesterase II in the biosynthesis of the polyketide Pikromycin. J Biol Chem, 2002, 277(50): 48028-34.

[29]

Schwarzer D, Mootz HD, Linne U, Marahiel MA. Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases. Proc Natl Acad Sci U S A, 2002, 99(22): 14083-8.

[30]

Huang RY, Yu WL, Zhang RZ, Xu Y. Efficient synthesis of malonyl-CoA by an acyl-CoA synthetase from Sp. Process Biochem, 2023, 135: 50-60.

[31]

Cogan DP, Zhang K, Li X, Li S, Pintilie GD, Roh SH, Craik CS, Chiu W, Khosla C. Mapping the catalytic conformations of an assembly-line polyketide synthase module. Science, 2021, 374(6568): 729-34.

[32]

Keeler AM, D’Ambrosio HK, Ganley JG, Derbyshire ER. Characterization of unexpected Self-Acylation activity of acyl carrier proteins in a modular type I apicomplexan polyketide synthase. ACS Chem Biol, 2023, 18(4): 785-93.

[33]

Geyer K, Hartmann S, Singh RR, Erb TJ. Multiple functions of the type II thioesterase associated with the phoslactomycin polyketide synthase. Biochemistry, 2022, 61(23): 2662-71.

[34]

Koch AA, Hansen DA, Shende VV, Furan LR, Houk KN, Jimenez-Oses G, Sherman DH. A single active site mutation in the Pikromycin thioesterase generates a more effective macrocyclization catalyst. J Am Chem Soc, 2017, 139(38): 13456-65.

[35]

Akey DL, Kittendorf JD, Giraldes JW, Fecik RA, Sherman DH, Smith JL. Structural basis for macrolactonization by the Pikromycin thioesterase. Nat Chem Biol, 2006, 2(10): 537-42.

[36]

Chakravarty B, Gu Z, Chirala SS, Wakil SJ, Quiocho FA. Human fatty acid synthase: structure and substrate selectivity of the thioesterase domain. Proc Natl Acad Sci U S A, 2004, 101(44): 15567-72.

[37]

Xi Z, Li L, Liu Z, Wu X, Xu Y, Zhang R. Rational design of l-Threonine Transaldolase-Mediated system for enhanced florfenicol intermediate production. J Agric Food Chem, 2024, 72(1): 461-74.

[38]

Xi Z, Li L, Zhang X, Jiang Z, Zhang R, Xu Y, Zhang W. Expanding the L-threonine transaldolase toolbox for the diastereomeric synthesis of β–hydroxy-α-amino acids. Mol Catal, 2023, 543: 113139

Funding

National Key Research and Development Program of China(2023YFA0914500)

National Science Foundation of China(32271487)

National First-class Discipline Program of Light Industry Technology and Engineering(LITE2018-12)

Program of Introducing Talents of Discipline to Universities(111-2-06)

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

199

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/