Sprouted grains fermentation: a comprehensive review of current knowledge, benefits, challenges, and perspectives

Koffigan Kponouglo , Maryline Kouba , Margaret Good , Noël Grosset , Lydia Aichaoui , Valérie Gagnaire , Florence Valence , Michel Gautier

Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (4) : 1395 -1414.

PDF
Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (4) : 1395 -1414. DOI: 10.1007/s43393-025-00366-z
Review
review-article

Sprouted grains fermentation: a comprehensive review of current knowledge, benefits, challenges, and perspectives

Author information +
History +
PDF

Abstract

Sprouted seeds are attracting growing interest because of their improved digestibility, high nutritional value, variety, low cost and ease of production. However, their microbiological fragility and elevated levels of certain anti-nutritional factors can sometimes pose problems for their use in both food and feed. Recent research has shown that combining fermentation with germination can effectively solve these problems. Fermentation not only improves nutritional value by lowering levels of anti-nutritional factors, but also improves microbiological safety, making it a promising approach to extending shelf life. Additionally, fermented sprouted seeds have beneficial properties may be of use in the formulation of functional foods, particularly for managing metabolic diseases such as diabetes. Despite these positive points, there is still room for improvement in the fermentation of sprouted seeds. This literature review explores current knowledge of seed germination, the advantages of fermenting sprouted seeds, and discusses the disadvantages and potential axes for improvement.

Keywords

Germination / Fermentation / Sprouted seeds / Fermentation / Cereals / Legumes

Cite this article

Download citation ▾
Koffigan Kponouglo, Maryline Kouba, Margaret Good, Noël Grosset, Lydia Aichaoui, Valérie Gagnaire, Florence Valence, Michel Gautier. Sprouted grains fermentation: a comprehensive review of current knowledge, benefits, challenges, and perspectives. Systems Microbiology and Biomanufacturing, 2025, 5(4): 1395-1414 DOI:10.1007/s43393-025-00366-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Singh AK, Rehal J, Kaur A, Jyot G. Enhancement of attributes of cereals by germination and fermentation: a review. Crit Rev Food Sci Nutr, 2015, 55(11): 1575-1589.

[2]

Wu F, Xu X. Sprouted grains-based fermented products. Sprouted grains, 2019Elsevier143-173.

[3]

Soetan K, Oyewol O. The need for adequate processing to reduce the antinutritional factors in plants used as human foods and animal feeds: a review. Afr J Food Sci., 2009, 3(9): 223-232

[4]

Fekadu GH. Antinutritional factors in plant foods: potential health benefits and adverse effects. Int J Nutr Food Sci, 2014, 3(4): 284.

[5]

Kalpanadevi V, Mohan VR. Effect of processing on antinutrients and in vitro protein digestibility of the underutilized legume, Vignaunguiculata (L.) Walpsubspunguiculata. LWT Food Sci Technol, 2013, 51(2): 455-461.

[6]

Benincasa P, Falcinelli B, Lutts S, Stagnari F, Galieni A. Sprouted grains: a comprehensive review. Nutrients, 2019, 11(2): 421.

[7]

Nkhata SG, Ayua E, Kamau EH, Shingiro JB. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci Nutr, 2018, 6(8): 2446-2458.

[8]

Vidal JD, Beres C, Brito FO, Zago L, Miyahira RF. Unlocking the functional potential of sprouts: A scientific exploration on simulated gastrointestinal digestion and colonic fermentation. J Funct Foods, 2024, 117. 106235

[9]

National Advisory Committee on Microbiological Criteria for Foods. Microbiological safety evaluations and recommendations on sprouted seeds. Int J Food Microbiol, 1999, 52(3): 123-153.

[10]

Warriner K, Smal B. Microbiological safety of sprouted seeds. The produce contamination problem, 2014Elsevier237-268.

[11]

European Food Safety Authority (EFSA). Shiga toxin-producing E. coli (STEC) O104:H4 2011 outbreaks in Europe: Taking Stock. EFSA J, 2011, 9(10): 2390.

[12]

Pennington H. Escherichia coli O104, Germany 2011. Lancet Infect Dis, 2011, 11(9): 652-653.

[13]

Poudelet E. La toxi-infection alimentaire de 2011 due à E. coli O104:H4 en Allemagne et en France: bilan et leçons à en tirer. Bull Académie Vét Fr, 2012, 165(4): 347-354.

[14]

Soon JM, Seaman P, Baines RN. Escherichia coli O104:H4 outbreak from sprouted seeds. Int J Hyg Environ Health, 2013, 216(3): 346-354.

[15]

ESSA. Ligne Directrice de l’ESSA En Matière d’hygiène Pour La Production de Germes et de Graines Destinées à La Germination., 52 (2017). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52017XX0708(01). Accessed 18 Apr 2024.

[16]

Bewley JD. Seed germination and dormancy. Plant Cell, 1997.

[17]

Commission E. Commission Implementing Regulation (EU) No 208/2013 of 11 March 2013 on traceability requirements for sprouts and seeds intended for the production of sprouts. J Eur Union, 2013, 68: 16-18

[18]

Nonogaki H, Bassel GW, Bewley JD. Germination—still a mystery. Plant Sci, 2010, 179(6): 574-581.

[19]

Peñaranda JD, Bueno M, Álvarez F, Pérez PD, Perezábad L. Sprouted grains in product development. Case studies of sprouted wheat for baking flours and fermented beverages. Int J Gastron Food Sci, 2021, 25: 100375.

[20]

Donkor ON, Stojanovska L, Ginn P, Ashton J, Vasiljevic T. Germinated grains: sources of bioactive compounds. Food Chem, 2012, 135(3): 950-959.

[21]

Frias J, Miranda M, Doblado R, Vidalvalverde C. Effect of germination and fermentation on the antioxidant vitamin content and antioxidant capacity of Lupinus var. Multolupa. Food Chem, 2005, 92(2): 211-220.

[22]

Hung PV, Maeda T, Yamamoto S, Morita N. Effects of germination on nutritional composition of waxy wheat: nutritional composition of germinated waxy wheat. J Sci Food Agric, 2012, 92(3): 667-672.

[23]

Nelson K, Stojanovska L, Vasiljevic T, Mathai M. Germinated grains: a superior whole grain functional food?. Can J Physiol Pharmacol, 2013, 91(6): 429-441.

[24]

Sathe SK, Deshpande SS, Reddy NR, Goll DE, Salunkhe DK. Effects of germination on proteins, raffinose oligosaccharides, and antinutritional factors in the Great Northern Beans (Phaseolusvulgaris L.). J Food Sci, 1983, 48(6): 1796-1800.

[25]

Marti A, Cardone G, Pagani MAPojić M, Tiwari U. Sprouted cereal grains and products. Innovative processing technologies for healthy grains, 20201ChamWiley113-141.

[26]

Wu G, Bazer FW, Dai Z, Li D, Wang J, Wu Z. Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci, 2014, 2(1): 387-417.

[27]

Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids, 2009, 37(1): 1-17.

[28]

Carcea M. Nutritional value of grain-based foods. Foods, 2020, 9(4): 504.

[29]

Tharanathan RN, Mahadevamma S. Grain legumes—a boon to human nutrition. Trends Food Sci Technol, 2003, 14(12): 507-518.

[30]

Gulewicz P, Martínez-Villaluenga C, Frias J, Ciesiołka D, Gulewicz K, Vidal-Valverde C. Effect of germination on the protein fraction composition of different lupin seeds. Food Chem, 2008, 107(2): 830-844.

[31]

Chilomer K, Kasprowicz-Potocka M, Gulewicz P, Frankiewicz A. The influence of Lupinus seed germination on the chemical composition and standardized ileal digestibility of protein and amino acids in pigs. J Anim Physiol Anim Nutr, 2013, 97(4): 639-646.

[32]

Pramitha JL, Rana S, Aggarwal PR, Ravikesavan R, Joel AJ, Muthamilarasan M. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients. Advances in genetics, 2021107ChamElsevier89-120.

[33]

El-Adawy TA, Rahma EH, El-Bedawey AA, El-Beltagy AE. Nutritional potential and functional properties of germinated mung bean, pea, and lentil seeds. Plant Foods Hum Nutr, 2003, 58(3): 1-13.

[34]

Bau HM, Villaume C, Nicolas JP, Méjean L. Effect of germination on chemical composition, biochemical constituents and antinutritional factors of soya bean (Glycine max) Seeds. J Sci Food Agric, 1997, 73(1): 1-9.

[35]

Bordingnon JR, Ida EL, Oliveira MC, Mandarino JM. Effect of germination on the protein content and on the level of specific activity of lipoxygenase-1 in seedlings of three soybean cultivars. Arch Latinoam Nutr, 1995, 45(3): 222-226

[36]

Lee CK, Karunanithy R. Effects of germination on the chemical composition of Glycine and Phaseolus beans. J Sci Food Agric, 1990, 51(4): 437-445.

[37]

Tian B, Xie B, Shi J. et al.. Physicochemical changes of oat seeds during germination. Food Chem, 2010, 119(3): 1195-1200.

[38]

Sharma B, Gujral HS. Modifying the dough mixing behavior, protein & starch digestibility and antinutritional profile of minor millets by sprouting. Int J Biol Macromol, 2020, 153: 962-970.

[39]

Aparicio-García N, Martínez-Villaluenga C, Frias J, Peñas E. Sprouted oat as a potential gluten-free ingredient with enhanced nutritional and bioactive properties. Food Chem, 2021, 338. 127972

[40]

Bown AW, Shelp BJ. The metabolism and functions of [gamma]-aminobutyric acid. Plant Physiol, 1997, 115(1): 1-5.

[41]

Shelp B. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci, 1999, 4(11): 446-452.

[42]

Diana M, Quílez J, Rafecas M. Gamma-aminobutyric acid as a bioactive compound in foods: a review. J Funct Foods, 2014, 10: 407-420.

[43]

Diez-Gutiérrez L, San-Vicente L, Barrón RLJ, del Villarán MC, Chávarri M. Gamma-aminobutyric acid and probiotics: multiple health benefits and their future in the global functional food and nutraceuticals market. J Funct Foods, 2020, 64: 103669.

[44]

Gan RY, Chan CL, Yang QQ. et al.. Bioactive compounds and beneficial functions of sprouted grains. Sprouted grains, 2019Elsevier191-246.

[45]

Oketch-Rabah HA, Madden EF, Roe AL, Betz JM. United States Pharmacopeia (USP) safety review of Gamma-Aminobutyric Acid (GABA). Nutrients, 2021, 13(8): 2742.

[46]

Rashmi D, Zanan R, John S, Khandagale K, Nadaf A. γ-Aminobutyric Acid (GABA): biosynthesis, role, commercial production, and applications. Studies in natural products chemistry, 2018ChamElsevier413-452.

[47]

Firbank MJ, Parikh J, Murphy N. et al.. Reduced occipital GABA in Parkinson disease with visual hallucinations. Neurology, 2018, 91(7): e675-e685.

[48]

Öngür D, Prescot AP, McCarthy J, Cohen BM, Renshaw PF. Elevated gamma-aminobutyric acid levels in chronic Schizophrenia. Biol Psychiatry, 2010, 68(7): 667-670.

[49]

Shetty AK, Bates A. Potential of GABA-ergic cell therapy for schizophrenia, neuropathic pain, and Alzheimer׳s and Parkinson׳s diseases. Brain Res, 2016, 1638: 74-87.

[50]

Paucar-Menacho LM, Simpalo-López WD, Castillo-Martínez WE, Esquivel-Paredes LJ, Martínez-Villaluenga C. Improving nutritional and health benefits of biscuits by optimizing formulations based on sprouted pseudocereal grains. Foods, 2022, 11(11): 1533.

[51]

Bouché N, Fromm H. GABA in plants: just a metabolite?. Trends Plant Sci, 2004, 9(3): 110-115.

[52]

Bown AW, Shelp BJ. Plant GABA: not just a metabolite. Trends Plant Sci, 2016, 21(10): 811-813.

[53]

Khan MIR, Jalil SU, Chopra P. et al.. Role of GABA in plant growth, development, and senescence. Plant Gene, 2021, 26. 100283

[54]

Ding J, Feng H. Controlled germination for enhancing the nutritional value of sprouted grains. Sprouted grains, 2019Elsevier91-112.

[55]

Frank T, Scholz B, Peter S, Engel KH. Metabolite profiling of barley: influence of the malting process. Food Chem, 2011, 124(3): 948-957.

[56]

Ding J, Johnson J, Chu YF, Feng H. Enhancement of γ-aminobutyric acid, avenanthramides, and other health-promoting metabolites in germinating oats (Avenasativa L.) treated with and without power ultrasound. Food Chem, 2019, 283: 239-247.

[57]

Kinnersley AM, Turano FJ. Gamma Aminobutyric Acid (GABA) and plant responses to stress. Crit Rev Plant Sci, 2000, 19(6): 479-509.

[58]

Tiansawang K, Luangpituksa P, Varanyanond W, Hansawasdi C. GABA (γ-aminobutyric acid) production, antioxidant activity in some germinated dietary seeds and the effect of cooking on their GABA content. Food Sci Technol, 2016, 36(2): 313-321.

[59]

Sorour M, Ramadan B, Mehanni A, Kobacy W. Impact of soaking and germination processes on starch and non-starch polysaccharides in some Egyptian barley cultivars. J Food Dairy Sci, 2021, 12(6): 147-151.

[60]

Ikram A, Saeed F, Afzaal M. et al.. Nutritional and end-use perspectives of sprouted grains: a comprehensive review. Food Sci Nutr, 2021.

[61]

Elango D, Rajendran K, Van Der Laan L. et al.. Raffinose family oligosaccharides: friend or foe for human and plant health?. Front Plant Sci, 2022, 13. 829118

[62]

Perri G, Coda R, Rizzello CG. et al.. Sourdough fermentation of whole and sprouted lentil flours: in situ formation of dextran and effects on the nutritional, texture and sensory characteristics of white bread. Food Chem, 2021, 355. 129638

[63]

Sanyal R, Bishi S. Reduction of flatus sugars: an approach towards nutritional enhancement. 2021.***

[64]

Muzquiz M, Rey C, Cuadrado C, Fenwick GR. Effect of germination on the oligosaccharide content of Lupinus species. J Chromatogr A, 1992, 607(2): 349-352.

[65]

Wei X, Wanasundara JPD, Shand P. Short-term germination of faba bean (Viciafaba L.) and the effect on selected chemical constituents. Appl Food Res., 2022, 2(1. 100030

[66]

Dhingra D, Michael M, Rajput H, Patil RT. Dietary fibre in foods: a review. J Food Sci Technol, 2012, 49(3): 255-266.

[67]

Fuller S, Beck E, Salman H, Tapsell L. New horizons for the study of dietary fibre and health: a review. Plant Foods Hum Nutr, 2016, 71(1): 1-12.

[68]

Brownlee IA. The physiological roles of dietary fibre. Food Hydrocoll, 2011, 25(2): 238-250.

[69]

Farooqui AA. Importance and roles of fibre in the diet. High Calorie Diet and the Human Brain, 2015Springer International Publishing193-218.

[70]

Delzenne NM, Olivares M, Neyrinck AM. et al.. Nutritional interest of dietary fibre and prebiotics in obesity: lessons from the MyNewGut consortium. Clin Nutr, 2020, 39(2): 414-424.

[71]

Holscher HD. Dietary fibre and prebiotics and the gastrointestinal microbiota. Gut Microbes, 2017, 8(2): 172-184.

[72]

Rezende ESV, Lima GC, Naves MMV. Dietary fibres as beneficial microbiota modulators: a proposed classification by prebiotic categories. Nutrition, 2021, 89. 111217

[73]

Ahmad S, Khan IAhmad S, Al-Shabib NA. Role of Dietary fibres and their preventive measures of human diet. Functional food products and sustainable health, 2020SpringerSingapore109-130.

[74]

Anderson JW, Baird P, Davis RHJr. et al.. Health benefits of dietary fibre. Nutr Rev, 2009, 67(4): 188-205.

[75]

Anderson JW, Deakins DA, Floore TL, Smith BM, Whitis SE. Dietary fibre and coronary heart disease. Crit Rev Food Sci Nutr, 1990, 29(2): 95-147.

[76]

Soliman GA. Dietary fibre, atherosclerosis, and cardiovascular disease. Nutrients, 2019, 11(5): 1155.

[77]

Timm DA, Slavin JL. Dietary fibre and the relationship to chronic diseases. Am J Lifestyle Med, 2008, 2(3): 233-240.

[78]

Dueñas M, Sarmento T, Aguilera Y. et al.. Impact of cooking and germination on phenolic composition and dietary fibre fractions in dark beans (Phaseolusvulgaris L.) and lentils (Lensculinaris L.). LWT Food Sci Technol, 2016, 66: 72-78.

[79]

Martincabrejas M, Diaz M, Aguilera Y, Benitez V, Molla E, Esteban R. Influence of germination on the soluble carbohydrates and dietary fibre fractions in non-conventional legumes. Food Chem, 2008, 107(3): 1045-1052.

[80]

Bigard AX, Letout A, Simler N, Banzet S, Koulmann N. Place des lipides dans l’alimentation du sportif. Sci Sports, 2004, 19(2): 53-62.

[81]

Vance DE, Vance JEBiochemistry of lipids, lipoproteins, and membranes, 20024Elsevier

[82]

Reboul E. Absorption intestinale des vitamines liposolubles. Ol Corps Gras Lipides, 2011, 18(2): 53-58.

[83]

Guesnet P, Alessandri JM, Astorg P, Pifferi F, Lavialle M. Les rôles physiologiques majeurs exercés par les acides gras polyinsaturés (AGPI). Ol Corps Gras Lipides, 2005, 12(5–6): 333-343.

[84]

Wettstein A. Biosynthèse des hormones stéroïdes. Experientia, 1961, 17(8): 329-344.

[85]

Chalon S. Acides gras poly-insaturés et fonctions cognitives. Ol Corps Gras Lipides, 2001, 8(4): 317-320.

[86]

Ferreira CD, Bubolz VK, da Silva J. et al.. Changes in the chemical composition and bioactive compounds of chickpea (Cicerarietinum L.) fortified by germination. LWT, 2019, 111: 363-369.

[87]

Offem JO, Egbe EO, Onen AI. Changes in lipid content and composition during germination of groundnuts. J Sci Food Agric, 1993, 62(2): 147-155.

[88]

Yousaf L, Hou D, Liaqat H, Shen Q. Millet: a review of its nutritional and functional changes during processing. Food Res Int, 2021, 142. 110197

[89]

Xu M, Jin Z, Simsek S, Hall C, Rao J, Chen B. Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food Chem, 2019, 295: 579-587.

[90]

Ozturk I, Sagdic O, Hayta M, Yetim H. Alteration in α-tocopherol, some minerals, and fatty acid contents of wheat through sprouting. Chem Nat Compd, 2012, 47(6): 876-879.

[91]

Lattanzio VRamawat KG, Mérillon JM. Phenolic compounds: introduction. Natural Products, 2013BerlinSpringer1543-1580.

[92]

Li PHLow temperature stress physiology in crops, 20181CRC Press.

[93]

Tsimogiannis D, Oreopoulou V. Classification of phenolic compounds in plants. Polyphenols in plants, 2019ChamElsevier263-284.

[94]

Miyahira RF, de Lopes JO, Antunes AEC. The use of sprouts to improve the nutritional value of food products: a brief review. Plant Foods Hum Nutr, 2021, 76(2): 143-152.

[95]

Podsędek A. Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT Food Sci Technol, 2007, 40(1): 1-11.

[96]

Albuquerque BR, Heleno SA, Oliveira MBPP, Barros L, Ferreira ICFR. Phenolic compounds: current industrial applications, limitations and future challenges. Food Funct, 2021, 12(1): 14-29.

[97]

Cevallos-Casals BA, Cisneros-Zevallos L. Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chem, 2010, 119(4): 1485-1490.

[98]

Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal, 2013, 18(14): 1818-1892.

[99]

Metsämuuronen S, Sirén H. Bioactive phenolic compounds, metabolism and properties: a review on valuable chemical compounds in Scots pine and Norway spruce. Phytochem Rev, 2019, 18(3): 623-664.

[100]

Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem, 2006, 99(1): 191-203.

[101]

Singh B, Singh JP, Kaur A, Singh N. Phenolic composition and antioxidant potential of grain legume seeds: a review. Food Res Int, 2017, 101: 1-16.

[102]

Mäkinen OE, Arendt EK. Nonbrewing applications of malted cereals, pseudocereals, and legumes: a review. J Am Soc Brew Chem, 2015, 73(3): 223-227.

[103]

Lu J, Zhao H, Chen J. et al.. Evolution of phenolic compounds and antioxidant activity during malting. J Agric Food Chem, 2007, 55(26): 10994-11001.

[104]

Khan MK, Karnpanit W, Nasar-Abbas SM, Huma Z, Jayasena V. Development of a fermented product with higher phenolic compounds and lower anti-nutritional factors from germinated lupin (Lupinusangustifolius L.). J Food Process Preserv, 2018, 42(12): 13843.

[105]

Dueñas M, Hernández T, Estrella I, Fernández D. Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinusangustifolius L.). Food Chem, 2009, 117(4): 599-607.

[106]

Asensi-Fabado MA, Munné-Bosch S. Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant Sci, 2010, 15(10): 582-592.

[107]

Li Y, Yang C, Ahmad H, Maher M, Fang C, Luo J. Benefiting others and self: Production of vitamins in plants. J Integr Plant Biol, 2021, 63(1): 210-227.

[108]

Smith AG, Croft MT, Moulin M, Webb ME. Plants need their vitamins too. Curr Opin Plant Biol, 2007, 10(3): 266-275.

[109]

Chand T, Savitri BVandamme EJ, Revuelta JL. Vitamin B 3, niacin. Industrial biotechnology of vitamins, biopigments, and antioxidants, 20161Wiley41-65.

[110]

Corrêa RCG, Garcia JAA, Correa VG, Vieira TF, Bracht A, Peralta RM. Pigments and vitamins from plants as functional ingredients: current trends and perspectives. Advances in food and nutrition research, 2019Elsevier259-303.

[111]

Granda L, Rosero A, Benešová K, Pluháčková H, Neuwirthová J, Cerkal R. Content of selected vitamins and antioxidants in colored and nonpigmented varieties of Quinoa, Barley, and Wheat grains. J Food Sci, 2018, 83(10): 2439-2447.

[112]

Lebiedzińska A, Szefer P. Vitamins B in grain and cereal–grain food, soy-products and seeds. Food Chem, 2006, 95(1): 116-122.

[113]

Plaza L, de Ancos B, Cano PM. Nutritional and health-related compounds in sprouts and seeds of soybean (Glycinemax), wheat (Triticumaestivum L.) and alfalfa (Medicagosativa) treated by a new drying method. Eur Food Res Technol, 2003, 216(2): 138-144.

[114]

Gan RY, Lui WY, Wu K. et al.. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends Food Sci Technol, 2017, 59: 1-14.

[115]

Doblado R, Frías J, Vidal-Valverde C. Changes in vitamin C content and antioxidant capacity of raw and germinated cowpea (Vignasinensis var. carilla) seeds induced by high pressure treatment. Food Chem, 2007, 101(3): 918-923.

[116]

Žilić S, Basić Z, Hadži-Tašković Šukalović V, Maksimović V, Janković M, Filipović M. Can the sprouting process applied to wheat improve the contents of vitamins and phenolic compounds and antioxidant capacity of the flour?. Int J Food Sci Technol, 2014, 49(4): 1040-1047.

[117]

De Angelis M. Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol, 2003, 87(3): 259-270.

[118]

Reddy NR, Sathe SK, Salunkhe DK. Phytates in legumes and cereals. Advances in food research, 200028Elsevier1-92

[119]

Singh B, Boukhris I, Pragya. et al.. Contribution of microbial phytases to the improvement of plant growth and nutrition: a review. Pedosphere, 2020, 30(3): 295-313.

[120]

Gessler NN, Serdyuk EG, Isakova EP, Deryabina YI. Phytases and the prospects for their application (review). Appl Biochem Microbiol, 2018, 54(4): 352-360.

[121]

Oatway L, Vasanthan T, Helm JH. Phytic acid. Food Rev Int, 2001, 17(4): 419-431.

[122]

Mišan A, Mandić A, Hadnađev TD, Filipčev BPojić M, Tiwari U. Healthy grain products. Innovative processing technologies for healthy grains, 20201ChamWiley83-111.

[123]

Mbithi-Mwikya S, Van Camp J, Yiru Y, Huyghebaert A. Nutrient and antinutrient changes in finger millet (Eleusine coracan) during sprouting. LWT Food Sci Technol, 2000, 33(1): 9-14.

[124]

Pagand J, Heirbaut P, Pierre A, Pareyt B. The magic and challenges of sprouted grains. Cereal Foods World, 2017, 62(5): 221-226.

[125]

Rémond D, Walrand S. Les graines de légumineuses: caractéristiques nutritionnelles et effets sur la santé. Innov Agronom, 2017, 60: 133-144.

[126]

Idate A, Shah R, Gaikwad V, Kumathekar S, Temgire S. A comprehensive review on antinutritional factors of chickpea (Cicerarietinum L.). Pharma Innov, 2021, 10(5): 816-823.

[127]

Ohanenye IC, Tsopmo A, Ejike CECC, Udenigwe CC. Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends Food Sci Technol, 2020, 101: 213-222.

[128]

Santos CS, Silva B, Valente LMP, Gruber S, Vasconcelos MW. The effect of sprouting in lentil (Lens culinaris) nutritional and microbiological profile. Foods, 2020, 9(4): 400.

[129]

Ghavidel RA, Prakash J. The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. LWT Food Sci Technol, 2007, 40(7): 1292-1299.

[130]

Lemmens E, De Brier N, Spiers KM. et al.. The impact of steeping, germination and hydrothermal processing of wheat (Triticumaestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements. Food Chem, 2018, 264: 367-376.

[131]

Hemalatha S, Platel K, Srinivasan K. Influence of germination and fermentation on bioaccessibility of zinc and iron from food grains. Eur J Clin Nutr, 2007, 61(3): 342-348.

[132]

Kato CG, de Gonçalves GA, Peralta RA. et al.. Inhibition of α -amylases by condensed and hydrolysable tannins: focus on kinetics and hypoglycemic actions. Enzyme Res, 2017.

[133]

Longstaff M, McNAB JM. The inhibitory effects of hull polysaccharides and tannins of field beans (Viciafaba L.) on the digestion of amino acids, starch and lipid and on digestive enzyme activities in young chicks. Br J Nutr, 1991, 65(2): 199-216.

[134]

Avilés-Gaxiola S, Chuck-Hernández C, Serna Saldívar SO. Inactivation methods of trypsin inhibitor in legumes: a review. J Food Sci, 2018, 83(1): 17-29.

[135]

Bosco AD, Ruggeri S, Mattioli S, Mugnai C, Sirri F, Castellini C. Effect of faba bean (Viciafaba Var. Minor ) Inclusion in starter and growing diet on performance, carcass and meat characteristics of organic slow-growing chickens. Ital J Anim Sci, 2013, 12(4): e76.

[136]

Muduuli DS, Marquardt RR, Guenter W. Effect of dietary vicine on the productive performance of laying chickens. Can J Anim Sci, 1981, 61(3): 757-764.

[137]

Cappellini M, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet, 2008, 371(9606): 64-74.

[138]

Buck JW, Walcott RR, Beuchat LR. Recent trends in microbiological safety of fruits and vegetables. Plant Health Prog, 2003, 4(1): 25.

[139]

Patterson JE, Woodburn MJ. Klebsiella and other bacteria on alfalfa and bean sprouts at the retail level. J Food Sci, 1980, 45(3): 492-495.

[140]

Adebiyi JA, Kayitesi E, Adebo OA, Changwa R, Njobeh PB. Food fermentation and mycotoxin detoxification: an African perspective. Food Control, 2019, 106: 106731.

[141]

Gbashi S, Edwin Madala N, De Saeger S. et al.Berka NP, Stepman F. et al.. The socio-economic impact of mycotoxin contamination in Africa. Mycotoxins: impact and management strategies, 2019ChamIntechOpen.

[142]

Da Edite-Bezerra RM, Freire FDCO, Erlan FMF, Izabel FGM, Rondina D. Mycotoxins and their effects on human and animal health. Food Control, 2014, 36(1): 159-165.

[143]

Richard JL. Some major mycotoxins and their mycotoxicoses—an overview. Int J Food Microbiol, 2007, 119(1–2): 3-10.

[144]

Marroquín-Cardona AG, Johnson NM, Phillips TD, Hayes AW. Mycotoxins in a changing global environment: a review. Food Chem Toxicol, 2014, 69: 220-230.

[145]

Coulombe RA. Biological action of mycotoxins. J Dairy Sci, 1993, 76(3): 880-891.

[146]

Doolotkeldieva TD. Microbiological control of flour-manufacture: Dissemination of mycotoxins producing fungi in cereal products. Microbiol Insights, 2010.

[147]

Ismaiel A, Papenbrock J. Mycotoxins: producing fungi and mechanisms of phytotoxicity. Agriculture, 2015, 5(3): 492-537.

[148]

Wolf-Hall CE. Mold and mycotoxin problems encountered during malting and brewing. Int J Food Microbiol, 2007, 119(1–2): 89-94.

[149]

Neme K, Mohammed A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control, 2017, 78: 412-425.

[150]

Schabo DC, Martins LM, Iamanaka BT. et al.. Modeling aflatoxin B1 production by Aspergillus flavus during wheat malting for craft beer as a function of grains steeping degree, temperature and time of germination. Int J Food Microbiol, 2020, 333. 108777

[151]

Couto SR, Sanromán . Application of solid-state fermentation to food industry—a review. J Food Eng, 2006, 76(3): 291-302.

[152]

Lortal S, El Mecherfi KE, Mariotti F. et al.. Aliments fermentés & bénéfices santé: un défi pour la recherche. Cah Nutr Diététique, 2020, 55(3): 136-148.

[153]

Marco ML, Sanders ME, Gänzle M. et al.. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat Rev Gastroenterol Hepatol, 2021, 18(3): 196-208.

[154]

Vinderola G, Cotter PD, Freitas M. et al.. Fermented foods: a perspective on their role in delivering biotics. Front Microbiol, 2023, 14: 1196239.

[155]

Hasan MN, Sultan MZ, Mar-E-Um M. Significance of fermented food in nutrition and food science. J Sci Res, 2014, 6(2): 373-386.

[156]

Paul Ross R, Morgan S, Hill C. Preservation and fermentation: past, present and future. Int J Food Microbiol, 2002, 79(1–2): 3-16.

[157]

Chavan JK, Kadam SS, Beuchat LR. Nutritional improvement of cereals by fermentation. Crit Rev Food Sci Nutr, 1989, 28(5): 349-400.

[158]

Grujović , Mladenović KG, Semedo-Lemsaddek T, Laranjo M, Stefanović OD, Kocić-Tanackov SD. Advantages and disadvantages of non-starter lactic acid bacteria from traditional fermented foods: potential use as starters or probiotics. Compr Rev Food Sci Food Saf, 2022, 21(2): 1537-1567.

[159]

LeBlanc JG, Laiño JE, del Valle MJ. et al.. B-Group vitamin production by lactic acid bacteria - current knowledge and potential applications: vitamin production by LAB. J Appl Microbiol, 2011, 111(6): 1297-1309.

[160]

Liem IT, Steinkraus KH, Cronk TC. Production of vitamin B-12 in tempeh, a fermented soybean food. Appl Environ Microbiol, 1977, 34(6): 773-776.

[161]

Chen W. Demystification of fermented foods by omics technologies. Curr Opin Food Sci, 2022, 46. 100845

[162]

Dimidi E, Cox S, Rossi M, Whelan K. Fermented foods: definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients, 2019, 11(8): 1806.

[163]

Zhao X, Song L, Han D, Han P, Bai F. Microbiological and physicochemical dynamics in traditional and industrial fermentation processes of Koumiss. Fermentation, 2024, 10(1): 66.

[164]

Teng TS, Chin YL, Chai KF, Chen WN. Fermentation for future food systems: Precision fermentation can complement the scope and applications of traditional fermentation. EMBO Rep, 2021, 22(5): e52680.

[165]

Giuffrè D, Giuffrè AM. Fermentation technology and functional foods. Front Biosci-Elite, 2024, 16(1): 8.

[166]

Bogueva D, Danova SBogueva D. Comparing precision fermentation and traditional fermentations: consumer views. Consumer perceptions and food, 2024Springer NatureSingapore563-588.

[167]

Mujahid M. Food fermentation: traditional practices and modern applications in food industry. Int J Food Ferment Technol, 2024.

[168]

Achi OK, Asamudo NUMerillon JM, Ramawat KG. Cereal-Based fermented foods of Africa as functional foods. Sweeteners, 2018Springer International Publishing1-32.

[169]

Odunfa SA. African fermented foods: from art to science. Mircen J Appl Microbiol Biotechnol, 1988, 4(3): 259-273.

[170]

Steinkraus KH. Classification of fermented foods: worldwide review of household fermentation techniques. Food Control, 1997, 8(5–6): 311-317.

[171]

Hesseltine CW, Wang HL. Traditional fermented foods. Biotechnol Bioeng, 1967, 9(3): 275-288.

[172]

Şanlier N, Gökcen BB, Sezgin AC. Health benefits of fermented foods. Crit Rev Food Sci Nutr, 2019, 59(3): 506-527.

[173]

Montemurro M, Pontonio E, Gobbetti M, Rizzello CG. Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. Int J Food Microbiol, 2019, 302: 47-58.

[174]

de Lopes CO, de Barcelos MFP, de Vieira CNG. et al.. Effects of sprouted and fermented quinoa (Chenopodium quinoa) on glycemic index of diet and biochemical parameters of blood of Wistar rats fed high carbohydrate diet. J Food Sci Technol, 2019, 56(1): 40-48.

[175]

Perri G, Rizzello CG, Ampollini M. et al.. Bioprocessing of barley and lentil grains to obtain in situ synthesis of exopolysaccharides and composite wheat bread with improved texture and health properties. Foods, 2021, 10(7): 1489.

[176]

Bartkiene E, Krungleviciute V, Juodeikiene G, Vidmantiene D, Maknickiene Z. Solid state fermentation with lactic acid bacteria to improve the nutritional quality of lupin and soya bean: solid state fermentation to improve the nutritional quality of lupin and soya bean. J Sci Food Agric, 2015, 95(6): 1336-1342.

[177]

Starzyńska-Janiszewska A, Stodolak B, Mickowska B. Effect of controlled lactic acid fermentation on selected bioactive and nutritional parameters of tempeh obtained from unhulled common bean (Phaseolusvulgaris) seeds: effect of lactic acid fermentation on parameters of tempeh made from unhulled common beans. J Sci Food Agric, 2014, 94(2): 359-366.

[178]

Zhang S, Shi Y, Zhang S, Shang W, Gao X, Wang H. Whole soybean as probiotic lactic acid bacteria carrier food in solid-state fermentation. Food Control, 2014, 41: 1-6.

[179]

Raveendran S, Parameswaran B. et al.. Applications of microbial enzymes in food industry. Food Technol Biotechnol, 2018. Centre for Biofuels, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum-695 019, India

[180]

Singh RS, Singh T, Pandey A. Microbial enzymes—an overview. Advances in enzyme technology, 2019Elsevier1-40.

[181]

Underkofler LA, Barton RR, Rennert SS. Production of microbial enzymes and their applications. 1957.***

[182]

Sharma R, Garg P, Kumar P, Bhatia SK, Kulshrestha S. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation, 2020, 6(4): 106.

[183]

Patel A, Shah N, Prajapati J. Biosynthesis of vitamins and enzymes in fermented foods by lactic acid bacteria and related genera: a promising approach. Croat J Food Sci Technol, 2013, 5: 85-91

[184]

Nout MJ. Fermented foods and their production. Ferment Food Saf MR Adams MJR Nout - Gaithersburg Md USA Aspen Publ Inc 2001. ISBN 0-8342-1843-7. Published online January 1, 2001.

[185]

Handoyo T, Morita N. Structural and functional properties of fermented soybean (Tempeh) by using Rhizopus oligosporus. Int J Food Prop, 2006, 9(2): 347-355.

[186]

Oliveira MDS, Feddern V, Kupski L, Cipolatti EP, Badiale-Furlong E, De Souza-Soares LA. Changes in lipid, fatty acids and phospholipids composition of whole rice bran after solid-state fungal fermentation. Bioresour Technol, 2011, 102(17): 8335-8338.

[187]

Obadina AO, Akinola OJ, Shittu TA, Bakare HA. Effect of natural fermentation on the chemical and nutritional composition of fermented soymilk Nono. Niger Food J, 2013, 31(2): 91-97.

[188]

Alhomodi AF, Zavadil A, Berhow M, Gibbons WR, Karki B. Daily development of nutritional composition of canola sprouts followed by solid-state fungal fermentation. Food Bioprocess Technol, 2021, 14(9): 1673-1683.

[189]

Cui Y, Miao K, Niyaphorn S, Qu X. Production of Gamma-Aminobutyric acid from lactic acid bacteria: a systematic review. Int J Mol Sci, 2020, 21(3): 995.

[190]

Subastri A, Ramamurthy C, Suyavaran A. et al.. Nutrient profile of porridge made from Eleusinecoracana (L.) grains: effect of germination and fermentation. J Food Sci Technol, 2015, 52(9): 6024-6030.

[191]

Östman EM, Nilsson M, Liljeberg Elmståhl HGM, Molin G, Björck IME. On the effect of lactic acid on blood glucose and insulin responses to cereal products: Mechanistic studies in healthy subjects and in vitro. J Cereal Sci, 2002, 36(3): 339-346.

[192]

Aparicio-García N, Martínez-Villaluenga C, Frias J, Peñas E. Production and characterization of a novel gluten-free fermented beverage based on sprouted oat flour. Foods, 2021, 10(1): 139.

[193]

Lai LR, Hsieh SC, Huang HY, Chou CC. Effect of lactic fermentation on the total phenolic, saponin and phytic acid contents as well as anti-colon cancer cell proliferation activity of soymilk. J Biosci Bioeng, 2013, 115(5): 552-556.

[194]

Elif S, Hayrunnisa N, Neslihan D, Merve S, Blent C. Purification, characterization of phytase enzyme from Lactobacillus plantarum bacteria and determination of its kinetic properties. Afr J Biotechnol, 2014, 13(23): 2373-2378.

[195]

Sharma N, Angural S, Rana M, Puri N, Kondepudi KK, Gupta N. Phytase producing lactic acid bacteria: Cell factories for enhancing micronutrient bioavailability of phytate rich foods. Trends Food Sci Technol, 2020, 96: 1-12.

[196]

Sümengen M, Dincer S, Kaya A. Phytase production from Lactobacillus brevis. Turk J Biol, 2012.

[197]

Sumengen M, Dincer S, Kaya A. Production and characterization of phytase from Lactobacillus plantarum. Food Biotechnol, 2013, 27(2): 105-118.

[198]

Adeyemo SM, Onilude AA. Enzymatic Reduction of anti-nutritional factors in fermenting soybeans by Lactobacillus plantarum isolates from fermenting cereals. Niger Food J, 2013, 31(2): 84-90.

[199]

Cheigh CI, Pyun YR. Nisin biosynthesis and its properties. Biotechnol Lett, 2005, 27(21): 1641-1648.

[200]

Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL. Biomedical applications of nisin. J Appl Microbiol, 2016, 120(6): 1449-1465.

[201]

Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J. Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek, 1996, 69(2): 193-202.

[202]

Shokoohi M, Razavi SH, Labbafi M, Vahidinia A, Gharibzahedi SMT. Wheat sprout flour as an attractive substrate for the producing probiotic fermented beverages: process development and product characterisation. Qual Assur Saf Crops Foods, 2015, 7(4): 469-475.

[203]

Ayivi RD, Gyawali R, Krastanov A, Aljaloud SO, Worku M, Tahergorabi R, Silva R, Claro-da-Ibrahim SA. Lactic acid bacteria: Food safety and human health applications. Dairy, 2020, 1(3): 202-232.

[204]

Budryn G, Klewicka E, Grzelczyk J, Gałązka-Czarnecka I, Mostowski R. Lactic acid fermentation of legume seed sprouts as a method of increasing the content of isoflavones and reducing microbial contamination. Food Chem, 2019, 285: 478-484.

[205]

Mousavi M, Gharekhani M, Alirezalu K, Roufegarinejad L, Azadmard-Damirchi S. Production and characterization of nondairy gluten-free fermented beverage based on buckwheat and lentil (Lens culinaris). Food Sci Nutr, 2023, 11(5): 2197-2210.

[206]

Nemzer B, Al-Taher F. Analysis of fatty acid composition in sprouted grains. Foods, 2023, 12(9): 1853.

[207]

Septembre-Malaterre A, Remize F, Poucheret P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res Int, 2018, 104: 86-99.

[208]

Rodríguez H, Curiel JA, Landete JM. et al.. Food phenolics and lactic acid bacteria. Int J Food Microbiol, 2009, 132(2–3): 79-90.

[209]

Averianova LA, Balabanova LA, Son OM, Podvolotskaya AB, Tekutyeva LA. Production of Vitamin B2 (Riboflavin) by microorganisms: an Overview. Front Bioeng Biotechnol, 2020, 8. 570828

[210]

Burton MO, Lochhead AG, Theophilus F. Studies on the production of vitamin B12 active substances by microorganisms. Can J Bot, 1951, 29(4): 352-359.

[211]

Halbrook ER, Cords F, Winter AR, Sutton TS. Vitamin B12 production by microorganisms isolated from poultry house litter and droppings. J Nutr, 1950, 41(4): 555-563.

[212]

Kang MJ, Baek KR, Lee YR, Kim GH, Seo SO. Production of Vitamin K by wild-type and engineered microorganisms. Microorganisms, 2022, 10(3): 554.

[213]

Aparicio-García N, Martínez-Villaluenga C, Frias J, Peñas E. A novel sprouted oat fermented beverage: Evaluation of safety and health benefits for celiac individuals. Nutrients, 2021, 13(8): 2522.

[214]

Li SC, Lin HP, Chang JS, Shih CK. Lactobacillus acidophilus-Fermented germinated brown rice suppresses preneoplastic lesions of the colon in rats. Nutrients, 2019, 11(11): 2718.

[215]

Cheigh CI, Park KY, Lee CY. Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Crit Rev Food Sci Nutr, 1994, 34(2): 175-203.

[216]

Wang P, Wu Z, Wu J, Pan D, Zeng X, Cheng K. Effects of salt stress on carbohydrate metabolism of Lactobacillus plantarum ATCC 14917. Curr Microbiol, 2016, 73(4): 491-497.

[217]

Bautista-Gallego J, Arroyo-López FN, Durán-Quintana MC, Garrido-Fernández A. Fermentation profiles of Manzanilla-Aloreña cracked green table olives in different chloride salt mixtures. Food Microbiol, 2010, 27(3): 403-412.

[218]

Tassou CC, Panagou EZ, Katsaboxakis KZ. Microbiological and physicochemical changes of naturally black olives fermented at different temperatures and NaCl levels in the brines. Food Microbiol, 2002, 19(6): 605-615.

[219]

Canon F, Nidelet T, Guédon E, Thierry A, Gagnaire V. Understanding the mechanisms of positive microbial interactions that benefit lactic acid bacteria co-cultures. Front Microbiol, 2020, 11: 2088.

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

270

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/