Exploring the significance of xenic and axenic cultures for diatoms: methodological insights, scope, and biotechnological implications

Hirak S. Parikh , Gayatri Dave , Pankaj Kumar Singh , Archana Tiwari

Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (3) : 969 -989.

PDF
Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (3) : 969 -989. DOI: 10.1007/s43393-025-00363-2
Review
review-article

Exploring the significance of xenic and axenic cultures for diatoms: methodological insights, scope, and biotechnological implications

Author information +
History +
PDF

Abstract

Introduction

Diatoms, a diverse group of photosynthetic unicellular algae, have gained significant global attention due to their ecological importance and multifaceted applications in scientific research. Their ecological roles are critical, encompassing nutrient cycling, carbon sequestration, and primary productivity, which establish them as essential components of aquatic food webs. The remarkable species richness of diatoms underscores their evolutionary success and highlights their integral roles in both freshwater and marine ecosystems. In addition to their environmental significance, diatoms possess a rich biochemical profile comprising valuable compounds with immense potential for biotechnological applications. These applications span diverse fields, including biofuel production, pharmaceuticals, and wastewater remediation. Despite the vast diversity and biochemical richness of diatoms, laboratory cultivation and maintenance remain challenging. To address these challenges, two primary methodologies have been developed: xenic and axenic culture techniques. Xenic culture involves maintaining diatoms alongside associated microorganisms, thereby replicating natural conditions and preserving ecological interactions. In contrast, axenic culture techniques focus on isolating pure diatom strains by employing meticulous sterilization processes, enabling precise experimental manipulation and fundamental research. Understanding the significance of xenic and axenic cultivation methodologies is essential for unlocking the full potential of diatoms across diverse scientific domains. This review elaborates on the methodologies, scope, and applications of xenic and axenic culture techniques for diatoms. By examining the intricacies of these cultivation approaches, it seeks to provide insights into optimizing diatom culture practices, advancing research initiatives, and harnessing the biotechnological potential of these extraordinary microorganisms.

Clinical trial registration

Not applicable.

Keywords

Axenic culture / Biotechnological applications / Cultivation / Diatoms / Microorganisms / Xenic cultures

Cite this article

Download citation ▾
Hirak S. Parikh, Gayatri Dave, Pankaj Kumar Singh, Archana Tiwari. Exploring the significance of xenic and axenic cultures for diatoms: methodological insights, scope, and biotechnological implications. Systems Microbiology and Biomanufacturing, 2025, 5(3): 969-989 DOI:10.1007/s43393-025-00363-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goessling JW, Su Y, Kühl M, Ellegaard M. (2021). Frustule photonics and light harvesting strategies in diatoms. In Diatom morphogenesis (pp. 269–300). Wiley. https://doi.org/10.1002/9781119488170.ch12

[2]

Matsuda Y, Kroth PG. (2014). Carbon fixation in diatoms. In Springer (pp. 335–362). https://doi.org/10.1007/978-94-017-8742-0_18

[3]

BenoistonAS, IbarbalzFM, BittnerL, GuidiL, et al.. The evolution of diatoms and their biogeochemical functions. Philosophical Trans Royal Soc B: Biol Sci, 2017, 372172820160397.

[4]

Litchman E. (2007). Resource competition and the ecological success of phytoplankton. In Evolution of primary producers in the sea (pp. 351–375). https://doi.org/10.1016/B978-012370518-1/50017-5

[5]

MorozovAA, GalachyantsYP. Diatom genes originating from red and green algae: implications for the secondary endosymbiosis models. Mar Genom, 2019, 45: 72-8.

[6]

MannDG, VanormelingenP. An inordinate fondness? The number, distributions, and origins of diatom species. J Eukaryot Microbiol, 2013, 60(4): 414-20.

[7]

BozarthA, MaierUG, ZaunerS. Diatoms in biotechnology: modern tools and applications. Appl Microbiol Biotechnol, 2009, 82: 195-201.

[8]

GrahamJM, GrahamLE, ZulkiflySB, PflegerBF, et al.. Freshwater diatoms as a source of lipids for biofuels. J Ind Microbiol Biotechnol, 2012, 39(3): 419-28.

[9]

RabieeN, KhatamiM, SoufiJ, FatahiG, et al.. Diatoms with invaluable applications in nanotechnology, biotechnology, and biomedicine: recent advances. ACS Biomaterials Sci Eng, 2021, 7(7): 3053-68.

[10]

SaxenaA, TiwariA, KaushikR, IqbalHM, et al.. Diatoms recovery from wastewater: overview from an ecological and economic perspective. J Water Process Eng, 2021, 39101705.

[11]

NieriP, CarpiS, EspositoR, CostantiniM, et al.. Bioactive molecules from marine diatoms and their value for the nutraceutical industry. Nutrients, 2023, 52464.

[12]

SaxenaA, SinghPK, BhatnagarA, TiwariA. Growth of marine diatoms on aquaculture wastewater supplemented with Nanosilica. Bioresour Technol, 2022, 344126210.

[13]

FuW, WichukK, BrynjólfssonS. Developing diatoms for value-added products: challenges and opportunities. New Biotechnol, 2015, 32(6): 547-51.

[14]

Ashokkumar S, Manimaran K, Kim K. (2015). Cultivation and identification of microalgae (Diatom). In Marine algae extracts: Processes, products, and applications (pp. 59–78). Wiley. https://doi.org/10.1002/9783527679577.ch4

[15]

BlancoS. Environmental factors controlling lake diatom communities: A meta-analysis of published data. Biogeosciences Discuss, 2014, 11(11): 15889-909.

[16]

WangJK, SeibertM. Prospects for commercial production of diatoms. Biotechnol Biofuels, 2017, 10: 1-13.

[17]

SharmaN, SimonDP, Diaz-GarzaAM, FantinoE, et al.. Diatoms biotechnology: various industrial applications for a greener tomorrow. Front Mar Sci, 2021, 8636613.

[18]

Brackx R. (2018). Diversity-ecosystem functioning relationships in axenic and non-axenic experimental diatom communities.

[19]

Taylor JC, Harding WR, Archibald CGM. (2007). A methods manual for the collection, preparation and analysis of diatom samples (1st ed., p. 60).

[20]

ZumsteinH. Morphologie und physiologie der Euglena gracilis Klebs. Jahrbücher Für Wissenschaftliche Botanik, 1900, 391495

[21]

Pringsheim EG. Pure cultures of algae. Cambridge University Press; 2016.

[22]

Sanders ER. Aseptic laboratory techniques: Plating methods. J Vis Exp. 2012;(63):e3064. https://doi.org/10.3791/3064-v

[23]

OladojaNA, AliJ, LeiW, YudongN, et al.. Coagulant derived from waste biogenic material for sustainable algae biomass harvesting. Algal Res, 2020, 50101982.

[24]

Singh P, Gupta SK, Guldhe A, Rawat I et al. (2015). Microalgae isolation and basic culturing techniques. In Handbook of marine microalgae (pp. 43–54). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800776-1.00004-2

[25]

Andersen RA, Kawachi M. Traditional microalgae isolation techniques. In: Anderson RA, editor. Algal culturing techniques. Elsevier Academic; 2005. pp. 83–101.

[26]

VuCHT, LeeHG, ChangYK, OhHM. Axenic cultures for microalgal biotechnology: establishment, assessment, maintenance, and applications. Biotechnol Adv, 2018, 36(2): 380-96.

[27]

UmaVS, GnanasekaranD, LakshmananU, DharmarP. Survey and isolation of marine cyanobacteria from Eastern Coast of India as a biodiesel feedstock. Biocatal Agric Biotechnol, 2020, 24101541.

[28]

WahbyI, BennisI, TilsaghaniC, LubiánLM. Potential use of flow cytometry in microalgae-based biodiesel project development. Int J Innov Appl Stud, 2014, 54333

[29]

GuillardRR, RytherJH. Studies of marine planktonic diatoms: I. Cyclotella Nana Hustedt, and detonula Confervacea (Cleve) Gran. Can J Microbiol, 1962, 8(2): 229-39.

[30]

SaxenaA, PrakashK, PhogatS, SinghPK, et al.. Inductively coupled plasma Nanosilica based growth method for enhanced biomass production in marine diatom algae. Bioresour Technol, 2020, 314123747.

[31]

de Carvalho JC, Sydney EB, Tessari LFA, Soccol CR. (2019). Culture media for mass production of microalgae. In Biofuels from algae (pp. 33–50). Elsevier. https://doi.org/10.1016/B978-0-444-64192-2.00002-0

[32]

LebeauT, RobertJM. Diatom cultivation and biotechnologically relevant products. Part I: cultivation at various scales. Appl Microbiol Biotechnol, 2003, 60: 612-23.

[33]

TolboomSN, Carrillo-NievesD, de Jesús Rostro-AlanisM, de la Cruz QuirozR, et al.. Algal-based removal strategies for hazardous contaminants from the environment– a review. Sci Total Environ, 2019, 665: 358-66.

[34]

BrucknerCG, KrothPG. Protocols for the removal of bacteria from freshwater benthic diatom cultures 1. J Phycol, 2009, 45(4): 981-6.

[35]

EppleyRW. The growth and culture of diatoms. Biology Diatoms, 1977, 13: 24-64

[36]

MiquelP. De La culture artificielle des diatomées. Le Diatomiste, 1892, 1(9): 93-9

[37]

RichterO. Reinkulturen der diatomeen. Ber Dtsch Bot Ges, 1903, 21: 493-506

[38]

PeterAP, KoyandeAK, ChewKW, HoSH, et al.. Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: current status and future challenges. Renew Sustain Energy Rev, 2022, 154111852.

[39]

AllenEJ. On the culture of the plankton diatom Thalassiosira Grauida Cleve, in artificial sea-water. J Mar Biol Association United Kingd, 1914, 10(3): 417-39.

[40]

NagaiS, ImaiI, ManabeT. A simple and quick technique for Establishing axenic cultures of the centric diatom coscinodiscus wailesii Gran. J Plankton Res, 1998, 20(7): 1417-20.

[41]

ShishlyannikovSM, ZakharovaYR, VolokitinaNA, MikhailovIS, et al.. A procedure for Establishing an axenic culture of the diatom Synedra acus subsp. Radians (Kütz.) Skabibitsch. From lake Baikal. Limnol Oceanography: Methods, 2011, 9(10): 478-84.

[42]

Windler M, Gruber A, Kroth PG. (2012). Purification of benthic diatoms from associated bacteria using the antibiotic Imipenem. http://nbn-resolving.de/urn:nbn:de:bsz:352–219682.

[43]

LewinJ. The isolation of algae. Rev Algol, 1959, 3: 181-97

[44]

WrightSJL. A simple agar plate method, using micro-algae, for herbicide bio-assay or detection. Bull Environ Contam Toxicol, 1975, 14: 65-70.

[45]

KimuraK, TomaruY. A unique method for culturing diatoms on agar plates. Plankton Benthos Res, 2013, 8(1): 46-8

[46]

WindlerM, BovaD, KryvendaA, StraileD, et al.. Influence of bacteria on cell size development and morphology of cultivated diatoms. Phycological Res, 2014, 62(4): 269-81.

[47]

GautamS, AryaA, VinayakV. Protocol to Establish axenic cultures for diatoms of fresh water. Int J Sci Res, 2016, 5(11): 410-8

[48]

KumarBR, MathimaniT, SudhakarMP, RajendranK, et al.. A state of the Art review on the cultivation of algae for energy and other valuable products: application, challenges, and opportunities. Renew Sustain Energy Rev, 2021, 138110649.

[49]

LeeREPhycology, fourth ed, 2008, Cambridge, United Kingdom. Cambridge University Press. .

[50]

GrahamLE, WilcoxLWAlgae, first ed, 2000, New Jersey. Prentice Hall. 640

[51]

AndersenRA, KawachiMAndersenRA. Traditional microalgae isolation techniques. Algal culturing techniques, 2005, London. Elsevier Academic. 83101

[52]

ZhouL, GaoS, YangW, WuS, HuanL, XieX, et al.. Transcriptomic and metabolic signatures of diatom plasticity to light fluctuations. Plant Physiol, 2022, 190(4): 2295-314.

[53]

De MartinoA, BartualA, WillisA, MeicheninA, VillazánB, MaheshwariU, BowlerC. Physiological and molecular evidence that environmental changes elicit morphological interconversion in the model diatom Phaeodactylum tricornutum. Protist, 2011, 162(3): 462-81.

[54]

MohamadH, MoraD, SkibbeO, AbarcaN, DeutschmeyerV, EnkeN, et al.. Morphological variability and genetic marker stability of 16 monoclonal pennate diatom strains under medium-term culture. Diatom Res, 2022, 37(4): 307-28.

[55]

EstesA, DuteRR. Valve abnormalities in diatom clones maintained in long-term culture. Diatom Res, 1994, 9(2): 249-58.

[56]

MüllerJ, DayJ, HardingG, HepperleK, LorenzD, FriedlT. Assessing genetic stability 842 of a range of terrestrial microalgae after cryopreservation using amplified fragment length polymorphism 843 (AFLP). Am J Bot, 2007, 94: 799-808.

[57]

Barreto FilhoMM, WalkerM, AshworthMP, MorrisJJ. Structure and long-term stability of the Microbiome in diverse diatom cultures. Microbiol Spectr, 2021, 9(1): 10-1128.

[58]

CookseyKE, Wigglesworth-CookseyB. Adhesion of bacteria and diatoms to surfaces in the Sea: a review. Aquat Microb Ecol, 1995, 9(1): 87-96.

[59]

AminSA, ParkerMS, ArmbrustEV. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev, 2012, 76(3): 667-84.

[60]

Baker LJ. (2017). Exploring the Diversity, Host-Microbe Effects, and Functional Properties of Diatom-Associated Bacteria in the Oligotrophic Ocean (Doctoral dissertation, University of Hawai’i at Manoa).

[61]

Boyd PW, Strzepek R, Chiswell S, Chang H, et al. Microbial control of diatom bloom dynamics in the open ocean. Geophys Res Lett. 2012;39(18). https://doi.org/10.1029/2012GL053448.

[62]

KoedooderC, StockW, WillemsA, MangelinckxS, et al.. Diatom-bacteria interactions modulate the composition and productivity of benthic diatom biofilms. Front Microbiol, 2019, 101255.

[63]

BakerLJ, KempPF. Exploring bacteria diatom associations using single-cell whole genome amplification. Aquat Microb Ecol, 2014, 72(1): 73-88.

[64]

Di CostanzoF, Di DatoV, RomanoG. Diatom–bacteria interactions in the marine environment: complexity, heterogeneity, and potential for biotechnological applications. Microorganisms, 2023, 11122967.

[65]

LépinayA, TurpinV, MondeguerF, Grandet-MarchantQ, et al.. First insight on interactions between bacteria and the marine diatom Haslea ostrearia: algal growth and metabolomic fingerprinting. Algal Res, 2018, 31: 395-405.

[66]

IanoraA, MiraltoA. Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: a review. Ecotoxicology, 2010, 19: 493-511.

[67]

HasleGR. Are most of the Domoic acid-producing species of the diatom genus Pseudo-nitzschia cosmopolites?. Harmful Algae, 2002, 1(2): 137-46.

[68]

KaczmarskaI, EhrmanJM, BatesSS, GreenDH, et al.. Diversity and distribution of epibiotic bacteria on Pseudo-nitzschia multiseries (Bacillariophyceae) in culture, and comparison with those on diatoms in native seawater. Harmful Algae, 2005, 4(4): 725-41.

[69]

BatesSS, DouglasDJ, DoucetteGJ, LegerC. Enhancement of Domoic acid production by reintroducing bacteria to axenic cultures of the diatom Pseudo-nitzschia multiseries. Nat Toxins, 1995, 3(6): 428-35.

[70]

PassowU. Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr, 2002, 55(3–4): 287-333.

[71]

GärdesA, RamayeY, GrossartHP, PassowU, et al.. Effects of Marinobacter adhaerens HP15 on polymer exudation by Thalassiosira weissflogii at different N:P ratios. Mar Ecol Prog Ser, 2012, 461: 1-14.

[72]

Di CostanzoF, Di DatoV, van ZylLJ, CutignanoA, et al.. Three novel bacteria associated with two centric diatom species from the mediterranean Sea, Thalassiosira rotula and Skeletonema Marinoi. Int J Mol Sci, 2021, 222413199.

[73]

Pickett-Heaps J. (1991). Cell division in diatoms. In International review of cytology (Vol. 128, pp. 63–108). Academic Press. https://doi.org/10.1016/S0074-7696(08)60497-0

[74]

Vaulot D, Bilcke G, Chaerle P, Falciatore A, Gourvil P, Lomas MW. (2024). Culturing Diatoms. Diatom Photosynthesis: From Primary Production to High-Value Molecules, 407–447.

[75]

BehringerG, OchsenkühnMA, FeiC, FanningJ, KoesterJA, AminSA. Bacterial communities of diatoms display strong conservation across strains and time. Front Microbiol, 2018, 9659.

[76]

CirriE, VyvermanW, PohnertG. Biofilm interactions—bacteria modulate sexual reproduction success of the diatom Seminavis robusta. FEMS Microbiol Ecol, 2018, 9411161.

[77]

Sison-MangusMP, KempnichMW, AppianoM, MehicS, YazzieT. Specific bacterial Microbiome enhances the sexual reproduction and auxospore production of the marine diatom. Odontella Plos One, 2022, 1710e0276305.

[78]

LópezD, VlamakisH, KolterR. Biofilms. Cold Spring Harb Perspect Biol, 2010, 27a000398

[79]

DonlanRM. Biofilms: microbial life on surfaces. Emerg Infect Dis, 2002, 89881.

[80]

WangBY, ChiB, KuramitsuHK. Genetic exchange between Treponema denticola and Streptococcus gordonii in biofilms. Oral Microbiol Immunol, 2002, 17(2): 108-12.

[81]

ToyofukuM, InabaT, KiyokawaT, ObanaN, et al.. Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem, 2016, 80(1): 7-12.

[82]

BrucknerCG, BahulikarR, RahalkarM, SchinkB, et al.. Bacteria associated with benthic diatoms from lake Constance: phylogeny and influences on diatom growth and secretion of extracellular polymeric substances. Appl Environ Microbiol, 2008, 74(24): 7740-9.

[83]

BrucknerCG, RehmC, GrossartHP, KrothPG. Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria. Environ Microbiol, 2011, 13(4): 1052-63.

[84]

WindlerM, LeinweberK, BartulosCR, PhilippB, et al.. Biofilm and capsule formation of the diatom Achnanthidium minutissimum are affected by a bacterium. J Phycol, 2015, 51(2): 343-55.

[85]

DoghriI, LavaudJ, DufourA, BazireA, et al.. Cell-bound exopolysaccharides from an axenic culture of the intertidal mudflat Navicula phyllepta diatom affect biofilm formation by benthic bacteria. J Appl Phycol, 2017, 29: 165-77.

[86]

AmonP, SandersonI. What is the microbiome?. Archives Disease childhood-Education Pract, 2017, 102(5): 257-60.

[87]

HelliwellKE, ShiblAA, AminSA. The diatom microbiome: new perspectives for diatom-bacteria symbioses. The molecular life of diatoms, 2022, Cham. Springer International Publishing. 679712.

[88]

SappM, SchwadererAS, WiltshireKH, HoppeHG, et al.. Species-specific bacterial communities in the phycosphere of microalgae?. Microb Ecol, 2007, 53: 683-99.

[89]

JohanssonON, PinderMI, OhlssonF, EgardtJ, et al.. Friends with benefits: exploring the phycosphere of the marine diatom Skeletonema Marinoi. Front Microbiol, 2019, 101828.

[90]

DalyG, DecorosiF, VitiC, AdessiA. Shaping the phycosphere: analysis of the EPS in diatom-bacterial co‐cultures. J Phycol, 2023, 59(4): 791-7.

[91]

Grossart HP. (1999). Interactions between marine bacteria and axenic diatoms (Cylindrotheca fusiformis, Nitzschia laevis, and Thalassiosira weissflogii) incubated under various conditions in the lab. Aquat Microb Ecol, 19(1).

[92]

GieslerJK, HarderT, WohlrabS. Microbiome and photoperiod interactively determine thermal sensitivity of Polar and temperate diatoms. Biol Lett, 2023, 191120230151.

[93]

GrossartHP, LevoldF, AllgaierM, SimonM, et al.. Marine diatom species harbour distinct bacterial communities. Environ Microbiol, 2005, 7(6): 860-73.

[94]

FranzosaEA, HsuT, Sirota-MadiA, ShafquatA, et al.. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol, 2015, 13(6): 360-72.

[95]

Van VlietAH. Next generation sequencing of microbial transcriptomes: challenges and opportunities. FEMS Microbiol Lett, 2010, 302(1): 1-7.

[96]

Kojadinovic-SirinelliM, VillainA, PuppoC, SingF, et al.. Exploring the Microbiome of the star freshwater diatom Asterionella Formosa in a laboratory context. Environ Microbiol, 2018, 20(10): 3601-15.

[97]

ShiblAA, IsaacA, OchsenkuhnMA, CárdenasA, et al.. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc Natl Acad Sci, 2020, 117(44): 27445-55.

[98]

TranQD, NeuTR, SultanaS, GiebelHA, et al.. Distinct glycoconjugate cell surface structures make the pelagic diatom Thalassiosira rotula an attractive habitat for bacteria. J Phycol, 2023, 59(2): 309-22.

[99]

BarbosaADS, CardozoML, DibLV, FonsecaABM, et al.. Comparative study of three xenic media culture for cultivation of Balantidium coli strains. Revista Brasileira De Parasitol Veterinária, 2018, 27: 19-25.

[100]

MarellaTK, SaxenaA, TiwariA. Diatom mediated heavy metal remediation: A review. Bioresour Technol, 2020, 305123068.

[101]

DussablyJ, MshvildadzeV, PichetteA, RipollL. Microalgae and Diatom-Potential pharmaceutical and cosmetic Resources–Review. J ISSN, 2022, 27662276

[102]

SchröfelA, KratošováG, BohunickáM, DobročkaE, et al.. Biosynthesis of gold nanoparticles using diatoms—silica-gold and EPS-gold Bionanocomposite formation. J Nanopart Res, 2011, 13: 3207-16.

[103]

UthappaUT, BrahmkhatriV, SriramG, JungHY, et al.. Nature engineered diatom Biosilica as drug delivery systems. J Controlled Release, 2018, 281: 70-83.

[104]

KhanMJ, RaiA, AhirwarA, SirotiyaV, et al.. Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations. Bioengineered, 2021, 12(2): 9531-49.

[105]

DelasoieJ, RossierJ, HaeniL, Rothen-RutishauserB, et al.. Slow-targeted release of a ruthenium anticancer agent from vitamin B12 functionalized marine diatom microalgae. Dalton Trans, 2018, 47(48): 17221-32

[106]

LeongYK, ChangJS. Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol, 2020, 303122886.

[107]

d’IppolitoG, SardoA, ParisD, VellaFM, et al.. Potential of lipid metabolism in marine diatoms for biofuel production. Biotechnol Biofuels, 2015, 8: 1-10.

[108]

HusseinHA, AbdullahMA. Anticancer compounds derived from marine diatoms. Mar Drugs, 2020, 187356.

[109]

JenaJ, PradhanN, DashBP, PandaPK, et al.. Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora Sp. and its antimicrobial activity. J Saudi Chem Soc, 2015, 19(6): 661-6.

[110]

Bayu A, Rachman A, Noerdjito DR, Putra MY et al. (2020, March). High-value chemicals from marine diatoms: A biorefinery approach. In IOP Conference Series: Earth and Environmental Science (Vol. 460, No. 1, p. 012012). IOP Publishing.

[111]

YangR, WeiD, XieJ. Diatoms as cell factories for high-value products: chrysolaminarin, eicosapentaenoic acid, and Fucoxanthin. Crit Rev Biotechnol, 2020, 40(7): 993-1009.

[112]

Saxena A, Lakshmi J, Bhattacharjya R, Singh PK et al. (2023). The role of antioxidant enzymes in diatoms and their therapeutic role. In Marine Antioxidants (pp. 89–118). Academic Press. https://doi.org/10.1016/B978-0-323-95086-2.00019-9

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/