IPTG feeding induction strategy enhances the expression of lipase A in Escherichia coli BL21(DE3)

Lun Jiang , Aiyun Hu , Mengxuan Zhou , Zhiren Gan , Jingyan Jiang , Cheng Lu , Mengrui Tao , Junyi Xu , Dongjing Mao , Jian Ding

Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (3) : 1286 -1301.

PDF
Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (3) : 1286 -1301. DOI: 10.1007/s43393-025-00354-3
Original Article
research-article

IPTG feeding induction strategy enhances the expression of lipase A in Escherichia coli BL21(DE3)

Author information +
History +
PDF

Abstract

When recombinant E. coli BL21(DE3) is induced to express Bacillus subtilis lipase A (BsLipA) using Isopropyl β-D-1-thiogalactopyranoside (IPTG), the one-time addition of IPTG leads to problems such as limited cell growth, a short enzyme production period, and low yield. To address these issues, this study proposes an innovative IPTG feeding strategy, where the IPTG feeding rate is adjusted based on cell growth rate between 4 and 10 h, followed by a constant IPTG feeding rate after 12 h. Fermentation experiments in a 5 L bioreactor demonstrated that IPTG feeding according to this strategy resulted in continuous enhancement of BsLipA activity, reaching 288.50 U/mL. Compared to a batch induced with a one-time addition of 0.2 mmol/L IPTG, BsLipA activity increased by 6.67 times. This IPTG feeding strategy was applied to a low-nutrient fermentation process with DO-start glucose feeding, leading to a further increase in BsLipA enzyme activity, with the highest activity reaching 580.29 U/mL. The results indicate that this strategy significantly reduces the toxic effects of IPTG on the cells, improves biomass, extends the enzyme production phase, and enhances BsLipA expression levels by balancing the induction strength and cell growth conditions.

Keywords

IPTG fed-batch induction / E. coli BL21(DE3) / Bacillus subtilis lipase A / Biomass-coupled automatic feeding

Cite this article

Download citation ▾
Lun Jiang, Aiyun Hu, Mengxuan Zhou, Zhiren Gan, Jingyan Jiang, Cheng Lu, Mengrui Tao, Junyi Xu, Dongjing Mao, Jian Ding. IPTG feeding induction strategy enhances the expression of lipase A in Escherichia coli BL21(DE3). Systems Microbiology and Biomanufacturing, 2025, 5(3): 1286-1301 DOI:10.1007/s43393-025-00354-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DongFY, ZhangM, MaR, LuC, XuF. Insights of conformational dynamics on catalytic activity in the computational stability design of Bacillus subtilis LipA. Arch Biochem Biophys, 2022, 722109196.

[2]

MormeneoM, AndrésI, BofillC, DíazP, ZuecoJ. Efficient secretion of Bacillus subtilis lipase A in Saccharomyces cerevisiae by translational fusion to the Pir4 cell wall protein. Appl Microbiol Biotechnol, 2008, 80(3): 437-45.

[3]

NutschelC, FultonA, ZimmermannO, SchwanebergU, JaegerKE, GohlkeH. Systematically scrutinizing the impact of substitution sites on thermostability and detergent tolerance for Bacillus subtilis lipase A. J Chem Inf Model, 2020, 60(3): 1568-84.

[4]

Sánchez M, Prim N, Rández-Gil F, Pastor FIJ, Diaz P. Engineering of Baker’s yeasts, E-coli and Bacillus hosts for the production of Bacillus subtilis lipase A. Biotechnol Bioeng. 2002;78(3):339–45. https://doi.org/10.1002/bit.10201.

[5]

IhlingN, BittnerN, DiederichsS, ScheldenM, KoronaA, HöflerGT, et al.. Online measurement of the respiratory activity in shake flasks enables the identification of cultivation phases and patterns indicating Recombinant protein production in various Escherichia coli host strains. Biotechnol Prog, 2018, 34(2): 315-27.

[6]

XiaQ, DingYR. Thermostability of lipase A and dynamic communication based on residue interaction network. Protein Pept Lett, 2019, 26(9): 702-16.

[7]

ZhouBH, XingL, WuW, ZhangXE, LinZL. Small surfactant-like peptides can drive soluble proteins into active aggregates. Microb Cell Fact, 2012, 1110.

[8]

FaustG, StandA, Weuster-BotzD. IPTG can replace lactose in auto-induction media to enhance protein expression in batch-cultured Escherichia coli. Eng Life Sci, 2015, 15(8): 824-9.

[9]

Vasconcelos L, Oliveira MA, Ribeiro VT, de Araújo JS, de Sousa FC, Martins DRA, dos Santos ES. Optimization of the 503 antigen induction strategy of Leishmania infantum chagasi expressed in Escherichia coli M15. Prep Biochem Biotechnol. 2018;48(10):968– 76. https://doi.org/10.1080/10826068.2018.1525563

[10]

OlaofeOA, BurtonSG, CowanDA, HarrisonSTL. Improving the production of a thermostable amidase through optimising IPTG induction in a highly dense culture of Recombinant Escherichia coli. Biochem Eng J, 2010, 52(1): 19-24.

[11]

de AndradeBC, MigliavaccaVF, OkanoFY, GrafulinVY, LunardiJ, RothG, et al.. Production of Recombinant β-galactosidase in bioreactors by fed-batch culture using DO-stat and linear control. Biocatal Biotransform, 2019, 37(1): 3-9.

[12]

YildirimS, KonradD, CalvezS, DriderD, PrévostH, LacroixC. Production of Recombinant bacteriocin divercin V41 by high cell density Escherichia coli batch and fed-batch cultures. Appl Microbiol Biotechnol, 2007, 77(3): 525-31.

[13]

WuFY, MaJY, ChaYP, LuDL, LiZW, ZhuoM, et al.. Using inexpensive substrate to achieve high-level lipase A secretion by Bacillus subtilis through signal peptide and promoter screening. Process Biochem, 2020, 99: 202-10.

[14]

SulandariW, Suhartono, Subanar, RodriguesPC. Exponential smoothing on modeling and forecasting multiple seasonal time series: an overview. Fluctuation Noise Lett, 2021, 20042130003.

[15]

WangQ, HuangQ, LiangL, ZhangL, PingZ, HuB, MaN. Research on sugarcane juice fermentation by ganoderma lucidum and assay of antioxidant activity of exopolysaccharide. J Food Process Preservation, 2018, 429e13761.

[16]

Rothkranz B, Rieb M, Unrau EL, Frindi-Wosch I, Hemmerich J, Sehl T, Rother D. High cell density cultivation combined with high specific enzyme activity: cultivation protocol for the production of an amine transaminase from Bacillus megaterium in E. coli. ChemBioChem. 2024;25(9):e202400006. https://doi.org/10.1002/cbic.202400006

[17]

SohoniSV, NelapatiD, SatheS, Javadekar-SubhedarV, GaikaiwariRP, WangikarPP. Optimization of high cell density fermentation process for Recombinant nitrilase production in E. coli. Bioresour Technol, 2015, 188: 202-8.

[18]

WuR, CaoJ, LiuFX, YangM, SuEZ. High-level soluble expression of phospholipase D from Streptomyces chromofuscus in Escherichia coli by combinatorial optimization. Electron J Biotechnol, 2021, 50: 1-9.

[19]

WyreC, OvertonTW. Use of a stress-minimisation paradigm in high cell density fed-batch Escherichia coli fermentations to optimise Recombinant protein production. J Ind Microbiol Biotechnol, 2014, 41(9): 1391-404.

[20]

SchmidederA, CremerJH, Weuster-BotzD. Parallel steady state studies on a milliliter scale accelerate Fed-Batch bioprocess design for Recombinant protein production with Escherichia coli. Biotechnol Prog, 2016, 32(6): 1426-35.

[21]

Badillo-ZeferinoGL, Ruiz-LópezII, Oliart-RosR, Sánchez-OteroMG. Improved expression and immobilization of Geobacillus thermoleovorans CCR11 thermostable Recombinant lipase. Biotechnol Appl Chem, 2017, 64(1): 62-9.

[22]

Gonzalez-PerezD, RatcliffeJ, TanSK, WongMCM, YeeYP, NyabadzaN, et al.. Random and combinatorial mutagenesis for improved total production of secretory target protein in Escherichia coli. Sci Rep, 2021, 1115290.

[23]

SuEZ, XuJJ, WuXP. High-level soluble expression of Serratia marcescens H30 lipase in Escherichia coli. Biotechnol Appl Chem, 2015, 62(1): 79-86.

[24]

YangX, YonghuaW, BoY. Modeling and optimization of fermentation by lipase MAS1-producing Recombinant Escherichia coli based on support vector machine. Mod Food Sci Technol, 2023, 39(1): 59-68.

[25]

Rajacharya GH, Sharma A, Yazdani SS. Proteomics and metabolic burden analysis to understand the impact of Recombinant protein production in E. coli. Sci Rep. 2024;14(1):12271. https://doi.org/10.1038/s41598-024-63148-y.

[26]

HuaQ, YangC, OshimaT, MoriH, ShimizuK. Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in Chemostat cultures. Appl Environ Microbiol, 2004, 70(4): 2354-66.

[27]

NiaziSK, MagoolaM. Advances in Escherichia coli-Based therapeutic protein expression: mammalian conversion, continuous manufacturing, and Cell-Free production. Biologics, 2023, 3(4): 380-401.

[28]

ChenAX, DongYG, JiangHG, WeiM, RenYH, ZhangJ. Application of plasmid stabilization systems for heterologous protein expression in Escherichia coli. Mol Biol Rep, 2024, 511939.

[29]

StriednerG, Cserjan-PuschmannM, Fau - PötschacherF, PötschacherF, Fau - BayerK, BayerK. Tuning the transcription rate of Recombinant protein in strong Escherichia coli expression systems through repressor Titration. Biotechnol Prog, 2003, 19(5): 1427-32

[30]

WangZ, LiuZM, CuiWJ, ZhouZM. Establishment of bioprocess for synthesis of nicotinamide by Recombinant Escherichia coli expressing High-Molecular-Mass nitrile hydratase. Appl Biochem Biotechnol, 2017, 182(4): 1458-66.

Funding

Jiangsu Basic Research Center for Synthetic Biology(Grant No. BK20233003)

Key Project of the Bayannur National Agricultural High-Tech Industry Demonstration Zone(NMKJXM202210)

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

368

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/