Engineering of farnesyl pyrophosphate hydrolase for farnesol production in Serratia marcescens

Xia Chen , Di Liu , Long Wang , Yao Lu , Yongai Ma , Tai-Ping Fan , Yujie Cai

Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (3) : 1220 -1230.

PDF
Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (3) : 1220 -1230. DOI: 10.1007/s43393-025-00344-5
Original Article
research-article

Engineering of farnesyl pyrophosphate hydrolase for farnesol production in Serratia marcescens

Author information +
History +
PDF

Abstract

Farnesol (FOH), a prized sesquiterpenoid alcohol, is at the core of this study, which outlines a synthetic biology strategy to significantly boost its production for use in flavors, fragrances, pharmaceuticals, and biofuels. We constructed an efficient FOH biosynthetic pathway in Serratia marcescens, leveraging rational engineering strategies to optimize its production. Initially, we introduced a heterologous mevalonate (MVA) pathway into S. marcescens for FOH biosynthesis. We then screened different sources of monophosphate phosphatases and performed rational modifications to enhance their activity. Computational simulations were employed to model the SmAp-FP complex, guiding protein engineering efforts. The engineered strain S. marcescens SPF6_L2 achieved a FOH titer of 457.3 ± 23.1 mg/L in shake flask fermentation, which was further scaled up to 1784.3 mg/L in a 5 L fermenter. This represents one of the highest reported titers of FOH production in microorganisms to date. Our approach integrates genetic engineering, enzyme optimization, and bioprocess design to efficiently biosynthesize FOH. It sets the stage for future research on optimizing S. marcescens metabolic pathways for enhanced terpenoid biosynthesis.

Keywords

Farnesol / Phosphatases / Protein engineering / Serratia marcescens

Cite this article

Download citation ▾
Xia Chen, Di Liu, Long Wang, Yao Lu, Yongai Ma, Tai-Ping Fan, Yujie Cai. Engineering of farnesyl pyrophosphate hydrolase for farnesol production in Serratia marcescens. Systems Microbiology and Biomanufacturing, 2025, 5(3): 1220-1230 DOI:10.1007/s43393-025-00344-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BakkaliF, AverbeckS, AverbeckD, IdaomarM. Biological effects of essential oils–a review. Food Chem Toxicology: Int J Published Br Industrial Biol Res Association, 2008, 46(2): 446-75

[2]

AvelarAJ, AkersAT, CooperSY, BaumgardZJ, HendersonBJ. Green Apple tobacco flavorant Farnesol enhances nicotine Reward-related behavior. FASEB J, 2019, 33(S1): 80519-80519

[3]

DelmondesGDA, Santiago LemosIC, DiasDDQ, CunhaGLD, AraújoIM, BarbosaR, CoutinhoHDM, FelipeCFB, Barbosa-FilhoJM, LimaNTRD, De MenezesIRA, KerntopfMR. Pharmacological applications of Farnesol (C15H26O): a patent review. Expert Opin Ther Pat, 2020, 30(3): 227-34

[4]

PantA, RondiniEA, KocarekTA. Farnesol induces fatty acid oxidation and decreases triglyceride accumulation in steatotic HepaRG cells. Toxicol Appl Pharmcol, 2019, 365: 61-70

[5]

RichterS, KathrotiaT, NaumannC, KickT, SlavinskayaN, Braun-UnkhoffM, RiedelU. Experimental and modeling study of Farnesane. Fuel, 2018, 215: 22-9

[6]

OhtoC, MuramatsuM, ObataS, SakuradaniE, ShimizuS. Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols. Appl Microbiol Biotechnol, 2009, 82(5): 837-45

[7]

MuramatsuM, OhtoC, ObataS, SakuradaniE, ShimizuS. Alkaline pH enhances Farnesol production by Saccharomyces cerevisiae. J Biosci Bioeng, 2009, 108(1): 52-5

[8]

Millis JRK, US. Maurina-brunker, Julie (Appleton, WI, US), Mcmullin, Thomas W. (Manitowoc, WI, US), Production of farnesol and geranylgeraniol, DCV, Inc. d/b/a Bio-Technical Resources., United States, WI), 2003.

[9]

WangC, YoonSH, ShahAA, ChungYR, KimJY, ChoiES, KeaslingJD, KimSW. Farnesol production from Escherichia coli by Harnessing the exogenous mevalonate pathway. Biotechnol Bioeng, 2010, 107(3): 421-9

[10]

WangC, ParkJ-E, ChoiE-S, KimS-W. Farnesol production in Escherichia coli through the construction of a Farnesol biosynthesis pathway – application of PgpB and YbjG phosphatases. Biotechnol J, 2016, 11(10): 1291-7

[11]

LiuD, GouL, SunT, LiuJ, FanT-P, DengH, CaiY. Characterization and application of a stationary phase promoter library from Serratia marcescens. ACS Synth Biol, 2024, 13(3): 969-72

[12]

LuY, LiuD, WangL, MaY, FanT-P, DengH, CaiY. Constructing High-Yielding Serratia marcescens for (–)-α-Bisabolol production based on the exogenous haloarchaeal MVA pathway and endogenous molecular chaperones. J Agric Food Chem, 2025, 73(1): 747-55

[13]

WaterhouseA, BertoniM, BienertS, StuderG, TaurielloG, GumiennyR, HeerFT, de BeerTAP, RempferC, BordoliL, LeporeR, SchwedeT. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 2018, 46(W1): W296-303

[14]

BienertS, WaterhouseA, de BeerTA, TaurielloG, StuderG, BordoliL, SchwedeT. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res, 2017, 45(D1): D313-9

[15]

EberhardtJ, Santos-MartinsD, TillackAF, ForliS. AutoDock Vina 1.2.0: new Docking methods, expanded force field, and Python bindings. J Chem Inf Model, 2021, 61(8): 3891-8

[16]

TrottO, OlsonAJ. AutoDock Vina: improving the speed and accuracy of Docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 2010, 31(2): 455-61

[17]

ZhuF, ZhongX, HuM, LuL, DengZ, LiuT. In vitro reconstitution of mevalonate pathway and targeted engineering of Farnesene overproduction in Escherichia coli. Biotechnol Bioeng, 2014, 111(7): 1396-405

[18]

Luckie BA, Kashyap M, Pearson AN, Chen Y, Liu Y, Valencia LE, Carrillo Romero A, Hudson GA, Tao XB, Wu B, Petzold CJ, Keasling JD. Development of Corynebacterium glutamicum as a monoterpene production platform. Metab Eng. 2023.

[19]

HeS, BekhofAMW, PopovaEZ, van MerkerkR, QuaxWJ. Improved taxadiene production by optimizing DXS expression and fusing short-chain prenyltransferases. New Biotechnol, 2024, 83: 66-73

[20]

YoonS-H, LeeS-H, DasA, RyuH-K, JangH-J, KimJ-Y, OhD-K, KeaslingJD, KimS-W. Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. J Biotechnol, 2009, 140(3): 218-26

[21]

HanGH, KimSK, YoonPK, KangY, KimBS, FuY, SungBH, JungHC, LeeDH, KimSW, LeeSG. Fermentative production and direct extraction of (-)-α-bisabolol in metabolically engineered Escherichia coli. Microb Cell Fact, 2016, 151185

[22]

WangC, YoonSH, JangHJ, ChungYR, KimJY, ChoiES, KimSW. Metabolic engineering of Escherichia coli for α-farnesene production. Metab Eng, 2011, 13(6): 648-55

[23]

HanJY, SongJM, SeoSH, WangC, LeeSG, LeeH, KimSW, ChoiES. Ty1-fused protein-body formation for Spatial organization of metabolic pathways in Saccharomyces cerevisiae. Biotechnol Bioeng, 2018, 115(3): 694-704

[24]

LiuY, JiangX, CuiZ, WangZ, QiQ, HouJ. Engineering the oleaginous yeast Yarrowia lipolytica for production of α-farnesene. Biotechnol Biofuels, 2019, 12296

[25]

YangC, GaoX, JiangY, SunB, GaoF, YangS. Synergy between Methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli. Metab Eng, 2016, 37: 79-91

[26]

LapczynskiA, BhatiaSP, LetiziaCS, ApiAM. Fragrance material review on Farnesol. Food Chem Toxicology: Int J Published Br Industrial Biol Res Association, 2008, 46(Suppl 11): S149-56

[27]

Lee H, Finckbeiner S, Jose SY, Wiemer DF, Eisner T. A.B.J.J.o.C.A. Attygalle, characterization of (E, E)-farnesol and its fatty acid esters from anal scent glands of Nutria (Myocastor coypus) by gas chromatography–mass spectrometry and gas chromatography–infrared spectrometry. 2007; 1165 (1–2); 136–43.

[28]

Goldberg L, Haklai R, Bauer V, Heiss A. Y.J.J.o.m.c. Kloog, new derivatives of Farnesylthiosalicylic acid (salirasib) for cancer treatment: Farnesylthiosalicylamide inhibits tumor growth in nude mice models. 2009; 52 (1); 197–205.

[29]

Rude MA. A.J.C.o.i.m. Schirmer, New microbial fuels: a biotech perspective. 2009; 12 (3); 274–281.

[30]

Asadollahi MA, Maury J, Møller K, Nielsen KF, Schalk M, Clark A, Nielsen JJB. bioengineering, production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. 2008; 99 (3); 666–77.

[31]

Cheng A-X, Xiang C-Y, Li J-X, Yang C-Q, Hu W-L, Wang L-J, Lou Y-G, Chen X-YJP. The rice (E)-β-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. 2007; 68 (12); 1632–41.

[32]

Schnee C, Köllner TG, Gershenzon J, Degenhardt JrJPP. The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-β-farnesene,(E)-nerolidol, and (E, E)-farnesol after herbivore damage. 2002; 130 (4); 2049–60.

[33]

Chen J, Wang W, Wang L, Wang H, Hu M, Zhou J, Du G, Zeng WJJoA, Chemistry F. Efficient de novo biosynthesis of curcumin in Escherichia coli by optimizing pathway modules and increasing the malonyl-CoA supply. 2023; 72 (1); 566–576.

[34]

Guo H, Yang Y, Xue F, Zhang H, Huang T, Liu W, Liu H, Zhang F, Yang M, Liu CJMB. Effect of flexible linker length on the activity of fusion protein 4-coumaroyl-CoA ligase:: Stilbene synthase. 2017; 13 (3); 598–606.

[35]

Ferraz CA, Leferink NG, Kosov I, Scrutton NSJC. Isopentenol utilization pathway for the production of Linalool in Escherichia coli using an improved bacterial Linalool/nerolidol synthase. 2021; 22 (13); 2325–34.

[36]

Zhang JB, Leng SQ, Huang C, Li KL, Li JB, Chen XF, Feng Y, Kai GY. Characterization of a group of germacrene A synthases involved in the biosynthesis of B-elemene from Atractylodis macrocephala. Int J Biol Macromol. 2024; 271.

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/