Engineering Saccharomyces cerevisiae for improving itaconic acid production

Hao Xu , Wenwen Yu , Xuan Zhou , Jiaheng Liu , Xianhao Xu , Yanfeng Liu , Jianghua Li , Guocheng Du , Long Liu , Xueqin Lv

Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (2) : 611 -621.

PDF
Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (2) : 611 -621. DOI: 10.1007/s43393-025-00339-2
Original Article

Engineering Saccharomyces cerevisiae for improving itaconic acid production

Author information +
History +
PDF

Abstract

Itaconic acid (ITA) is an unsaturated organic acid used in industrial production due to its versatility as a polymer building block. Engineering microbial cell factories for ITA biosynthesis from cost-effective and renewable raw materials has gained significant attention. Here, we performed combinatorial engineering using Saccharomyces cerevisiae to improve ITA production. First, exogenous cis-aconitic acid decarboxylase (CAD) was integrated into S. cerevisiae to construct the ITA-producing chassis. Then, the rate-limiting step was eliminated by changing the promoter that drives CAD expression to optimize ITA synthesis. A mitochondrial cis-aconitate transporter MTTA was also expressed to facilitate the transport of precursor, which resulted in an ITA titer of 244 mg/L. Furthermore, with overexpression of truncated citrate synthase tCIT2, an increased titer of 409 mg/L was obtained. Finally, the transport protein Qdr3 was overexpressed to enhance the export of ITA, resulting in a production of 578 mg/L in shake flask. In a 5-L bioreactor, the ITA titer reached 1.2 g/L, representing the highest reported level in S. cerevisiae. Overall, an advanced recombinant yeast strain was constructed for the efficient production of ITA via combinatorial metabolic engineering.

Keywords

Itaconic acid / Microbial cell factories / Saccharomyces cerevisiae / Metabolic engineering / Transport protein

Cite this article

Download citation ▾
Hao Xu, Wenwen Yu, Xuan Zhou, Jiaheng Liu, Xianhao Xu, Yanfeng Liu, Jianghua Li, Guocheng Du, Long Liu, Xueqin Lv. Engineering Saccharomyces cerevisiae for improving itaconic acid production. Systems Microbiology and Biomanufacturing, 2025, 5(2): 611-621 DOI:10.1007/s43393-025-00339-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Werpy TA, Holladay JE, White JF. Top value added chemicals from biomass: I. results of screening for potential candidates from sugars and synthesis gas. U.S. Department of Energy; 2004. https://doi.org/10.2172/15008859.

[2]

El-ImamAA, DuC. Fermentative itaconic acid production. J Biodivers Biopros Dev, 2014, 1: 1-8.

[3]

SugimotoM, SakagamiH, YokoteY, Onuma H,KanekoM, MoriM, Sakaguchi Y,SogaT, TomitaM. Non-targeted metabolite profiling in activated macrophage secretion. Metabolomics, 2011, 8: 624-33.

[4]

Fuchs AL, Schiller SM, Keegan WJ,Ammons MCB,Eilers B, Tripet B,Copie V. Quantitative (1)H NMR metabolomics reveal distinct metabolic adaptations in human macrophages following differential activation. Metabolites https://doi.org/10.3390/metabo9110248

[5]

StrelkoCL, LuW. Dufort FJ,Seyfried TN,Chiles TC,Rabinowitz JD,Roberts MF. Itaconic acid is a mammalian metabolite induced during macrophage activation. J Am Chem Soc, 2011, 133: 16386-9.

[6]

LampropoulouV, Sergushichev A,Bambouskova M,NairS, VincentEELE, Cervantes-BarraganL, MaX, HuangSC, GrissT. Randolph GJ,Pearce EJ,Jones RG,Diwan A,Diamond MS,Artyomov MN. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab, 2016, 24: 158-66.

[7]

DwiartiL, Yamane K,YamataniH, Kahar P,OkabeM. Purification and characterization of cis-aconitic acid decarboxylase from aspergillus terreus TN484-M1. J Biosci Bioeng, 2002, 94: 29-33.

[8]

KrullS, HevekerlA, Kuenz A,PrusseU. Process development of itaconic acid production by a natural wild type strain of aspergillus terreus to reach industrially relevant final titers. Appl Microbiol Biotechnol, 2017, 101: 4063-72.

[9]

RiscaldatiE, MoresiM, Federici F,PetruccioliM. Effect of pH and stirring rate on itaconate production by aspergillus terreus. J Biotechnol, 2000, 83: 219-30.

[10]

ZhaoC, Cui Z,Zhao X,ZhangJ, Zhang L,TianY, Qi Q,LiuJ. Enhanced itaconic acid production in Yarrowia Lipolytica via heterologous expression of a mitochondrial transporter MTT. Appl Microbiol Biotechnol, 2019, 103: 2181-92.

[11]

Hosseinpour TehraniH, BeckerJ, Bator I,SaurK, MeyerS, Rodrigues LoiaAC. Blank LM,Wierckx N. Integrated strain- and process design enable production of 220 g·L-1 itaconic acid with Ustilago maydis. Biotechnol Biofuels, 2019, 12: 263.

[12]

BlazeckJ, MillerJ, Pan A,GenglerJ, Holden C,JamoussiM, AlperHS. Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Appl Microbiol Biotechnol, 2014, 98: 8155-64.

[13]

CravensA, PayneJ, SmolkeCD. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat Commun, 2019, 10: 2142.

[14]

HanL, Wu Y,XuY. Lv X,Liu L. Engineered Saccharomyces cerevisiae for de novo δ-tocotrienol biosynthesis. Syst Microbiol Biomanuf, 2023, 4: 150-64.

[15]

CaoC, GaoJ, Zhu B,ZhouYJ. Engineering yeast for bio-production of food ingredients. Syst Microbiol Biomanuf, 2022, 3: 2-11.

[16]

SuR, LiS, ZhaoY, DengY. Identification and development of a glucaric acid biosensor in Saccharomyces cerevisiae. Syst Microbiol Biomanuf, 2022, 2: 623-33.

[17]

LiuL, ReddenH, AlperHS. Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces. Curr Opin Biotechnol, 2013, 24: 1023-30.

[18]

LianJ, MishraS, ZhaoH. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metab Eng, 2018, 50: 85-108.

[19]

YoungEM, ZhaoZ, Gielesen BEM,WuL, Benjamin GordonD, RoubosJA, VoigtCA. Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast. Metab Eng, 2018, 48: 33-43.

[20]

XuY, WangX, ZhangC, Lv X,Liu Y,LiuS, LiJ, ChenJ, Ledesma-AmaroR, LiuL. De novo biosynthesis of rubusoside and rebaudiosides in engineered yeasts. Nat Commun, 2022, 13: 3040.

[21]

SunL, ZhangQ, Kong X,LiuY, LvX, Ledesma-AmaroR, ChenJ, LiuL. Highly efficient neutralizer-free l-malic acid production using engineered Saccharomyces cerevisiae. Bioresour Technol, 2023, 370: 128580.

[22]

GietzRD, SchiestlRH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc, 2007, 2: 31-4.

[23]

Reider ApelA, d’EspauxL, WehrsM, Sachs D,LiRA, Tong GJ,GarberM, Nnadi O,ZhuangW. Hillson NJ,Keasling JD,Mukhopadhyay A. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucleic Acids Res, 2017, 45: 496-508.

[24]

LiA, van LuijkN, ter BeekM, CaspersM, PuntP, van der WerfM. A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol, 2011, 48: 602-11.

[25]

WickerT, SabotF, Hua-VanA, Bennetzen JL,CapyP, Chalhoub B,FlavellA. Leroy P,Morgante M,Panaud O. A unified classification system for eukaryotic transposable elements. Nat Rev Genet, 2007, 8: 973-82.

[26]

CameronJR, Loh EY,DavisRW. Evidence for transposition of dispersed repetitive DNA families in yeast. Cell, 1979, 16: 739-51.

[27]

QuL, Xiu X,SunG, Zhang C,Yang H,LiuY. Lv X,Liu L. Engineered yeast for efficient de novo synthesis of 7-dehydrocholesterol. Biotechnol Bioeng, 2022, 119: 1278-89.

[28]

van der StraatL, VernooijM, LammersM, van den BergW. Schonewille T,Cordewener J,Van Der Meer I,Koops A,De Graaff LH. Expression of the aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus Niger. Microb Cell Fact, 2014, 13: 1-9.

[29]

SteigerMG, Punt PJ,Ram AFJ,Mattanovich D,SauerM. Characterizing MttA as a mitochondrial cis-aconitic acid transporter by metabolic engineering. Metab Eng, 2016, 35: 95-104.

[30]

BeinertH, KennedyMC, StoutCD. Aconitase as iron– sulfur protein, enzyme, and iron-regulatory protein. Chem rev, 1996, 96: 2335-74.

[31]

Hosseinpour TehraniH, GeiserE, EngelM, Hartmann SK,HossainAH. Punt PJ,Blank LM,Wierckx N. The interplay between transport and metabolism in fungal itaconic acid production. Fungal Genet Biol, 2019, 125: 45-52.

[32]

Sa-CorreiaI, dos SantosSC. Teixeira MC,Cabrito TR,Mira NP. Drug:H + antiporters in chemical stress response in yeast. Trends Microbiol, 2009, 17: 22-31.

[33]

KaraffaL, KubicekCP. Citric acid and itaconic acid accumulation: variations of the same story?. Appl Microbiol Biotechnol, 2019, 103: 2889-902.

Funding

National Key Research and Development Program of China(2023YFF1104104)

National Natural Science Foundation of China(32100439)

China National Postdoctoral Program for Innovative Talents(BX20240145)

Jiangsu Funding Program for Excellent Postdoctoral Talent(2024ZB009)

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

311

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/