Leveraging CRISPR/Cas9 in notable bacteria for the production of industrially valuable compounds

Md Dilshad Karim , Md Abuhena , Lutfur Rahman , Jubair Al rashid

Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (2) : 512 -530.

PDF
Systems Microbiology and Biomanufacturing ›› 2025, Vol. 5 ›› Issue (2) : 512 -530. DOI: 10.1007/s43393-024-00326-z
Review

Leveraging CRISPR/Cas9 in notable bacteria for the production of industrially valuable compounds

Author information +
History +
PDF

Abstract

Scientists are traditionally relied on bacteria to find and generate new natural chemicals. Gene editing research to identify, biosynthesize, and metabolically design natural chemicals is popular. The conventional genome editing relies on host or imported protein recombination. Microorganism’s diverse genetic history makes universal platforms difficult. The genetic variety renders experiments time consuming and useless. The CRISPR/Cas9 gene editing technique offers more functional diversity because to its diverse targeting capabilities, surpassing conventional approaches constrained by sequence homology or site restrictions. This enhances productivity, streamlines trials, and propels the research of natural goods. The CRISPR/Cas9 genetic editing technology may surpass sequence or location related constraints of earlier gene editing methods due to its targeting versatility. This methodology aids researchers investigating natural goods by optimizing and enhancing experimental techniques. This article provides an overview of the CRISPR/CRISPR-associated (Cas) mechanism, a transformative genome engineering technique in molecular biology. This paper aims to highlight and analyze the applications of CRISPR/Cas, particularly CRISPR/SpCas9, in genome editing for the identification of natural products. The creatures discussed embrace bacteria such as, Streptomyces, Bacillus, Clostridium, Corynebacterium, Myxobacteria and Escherichia. In a nutshell we will examine the potential benefits of using CRISPR/Cas in the discovery of natural products.

Keywords

Bacteria / CRISPR/Cas9 / Genome editing / Natural compounds / Metabolites / Biological Sciences / Genetics

Cite this article

Download citation ▾
Md Dilshad Karim, Md Abuhena, Lutfur Rahman, Jubair Al rashid. Leveraging CRISPR/Cas9 in notable bacteria for the production of industrially valuable compounds. Systems Microbiology and Biomanufacturing, 2025, 5(2): 512-530 DOI:10.1007/s43393-024-00326-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chibani-ChennoufiS, BruttinA, DillmannML, et al. . Phage-host interaction: an ecological perspective. J Bacteriol, 2004, 186123677-86.

[2]

DyRL, RichterC, SalmondGP, et al. . Remarkable mechanisms in microbes to resist phage infections. Annual Rev Virol, 2014, 11307-31.

[3]

MrukI, KobayashiI. To be or not to be: regulation of restriction–modification systems and other toxin–antitoxin systems. Nucleic Acids Res, 2014, 42170-86.

[4]

GerdesK, ChristensenSK, Løbner-OlesenA. Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol, 2005, 35371-82.

[5]

GoldfarbT, SberroH, WeinstockE, et al. . BREX is a novel phage resistance system widespread in microbial genomes. EMBO J, 2015, 342169-83.

[6]

MakarovaKS, GrishinNV, ShabalinaSA, et al. . A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct, 2006, 1: 1-26.

[7]

ArberW. Host-controlled modification of bacteriophage. Annual Reviews Microbiol, 1965, 191365-78.

[8]

SnyderL. Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagents?. Mol Microbiol, 1995, 153415-20.

[9]

IshinoY, ShinagawaH, MakinoK, et al. . Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 1987, 169125429-33.

[10]

JansenR, EmbdenJDV, GaastraW, et al. . Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002, 4361565-75.

[11]

BolotinA, QuinquisB, SorokinA, et al. . Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 2005, 15182551-61.

[12]

BarrangouR, FremauxC, DeveauH, et al. . CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 3155819709-1712.

[13]

DeveauH, GarneauJE, MoineauS. CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol, 2010, 641475-93.

[14]

Van Der OostJ, WestraER, JacksonRN, et al. . Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat Rev Microbiol, 2014, 127479-92.

[15]

HorvathP, BarrangouR. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010, 3275962167-70.

[16]

MakarovaKS, WolfYI, AlkhnbashiOS, et al. . An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol, 2015, 1311722-36.

[17]

MakarovaKS, HaftDH, BarrangouR, et al. . Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol, 2011, 96467-77.

[18]

KooninEV, MakarovaKS, ZhangF. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol, 2017, 37: 67-78.

[19]

MarraffiniLA. CRISPR-Cas immunity in prokaryotes. Nature, 2015, 526757155-61.

[20]

AmitaiG, SorekR. CRISPR–Cas adaptation: insights into the mechanism of action. Nat Rev Microbiol, 2016, 14267-76.

[21]

MarraffiniLA, SontheimerEJ. Self-versus non-self-discrimination during CRISPR RNA-directed immunity. Nature, 2010, 4637280568-71.

[22]

MojicaFJ, Díez-VillaseñorC, García-MartínezJ, et al. . Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 2009, 1553733-40.

[23]

JinekM, ChylinskiK, FonfaraI, et al. . A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 3376096816-21.

[24]

KnottGJ, DoudnaJA. CRISPR-Cas guides the future of genetic engineering. Science, 2018, 3616405866-9.

[25]

GasiunasG, BarrangouR, HorvathP, et al. . Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci, 2012, 10939E2579-86.

[26]

SternbergSH, ReddingS, JinekM, et al. . DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Biophys J, 2014, 1062695a.

[27]

PacesaM, LoeffL, QuerquesI, et al. . R-loop formation and conformational activation mechanisms of Cas9. Nature, 2022, 6097925191-6.

[28]

CofskyJC, SoczekKM, KnottGJ, et al. . CRISPR–Cas9 bends and twists DNA to read its sequence. Nat Struct Mol Biol, 2022, 294395-402.

[29]

DoudnaJA, CharpentierE. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 34662131258096.

[30]

Zetsche B, Gootenberg JS, Abudayyeh OO et al. (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. cell 163(3):759–771. https://doi.org/10.1016/j.cell.2015.09.038

[31]

FonfaraI, RichterH, BratovičM, et al. . The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature, 2016, 5327600517-21.

[32]

SwartsDC, van der OostJ, JinekM. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol Cell, 2017, 662221-33.

[33]

ZetscheB, HeidenreichM, MohanrajuP, et al. . Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat Biotechnol, 2017, 35131-4.

[34]

ZhangY, LongC, LiH, et al. . CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv, 2017, 341602814.

[35]

GierRA, BudinichKA, EvittNH, et al. . High-performance CRISPR-Cas12a genome editing for combinatorial genetic screening. Nat Commun, 2020, 1113455.

[36]

ChenJS, MaE, HarringtonLB, et al. . CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, 3606387436-9.

[37]

GootenbergJS, AbudayyehOO, KellnerMJ, et al. . Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 2018, 3606387439-44.

[38]

XueC, GreeneEC. DNA repair pathway choices in CRISPR-Cas9-mediated genome editing. Trends Genet, 2021, 377639-56.

[39]

NambiarTS, BaudrierL, BillonP, et al. . CRISPR-based genome editing through the lens of DNA repair. Mol Cell, 2022, 822348-88.

[40]

BrinkmanEK, ChenT, de HaasM, et al. . Kinetics and fidelity of the repair of Cas9-induced double-strand DNA breaks. Mol Cell, 2018, 705801-13.

[41]

MaliP, YangL, EsveltKM, et al. . RNA-guided human genome engineering via Cas9. Science, 2013, 3396121823-6.

[42]

CongL, RanFA, CoxD, et al. . Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 3396121819-23.

[43]

JinekM, EastA, ChengA, et al. . RNA-programmed genome editing in human cells. Elife, 2013, 2: 00471.

[44]

ChoSW, KimS, KimJM, et al. . Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol, 2013, 313230-2.

[45]

ChakrabartiAM, Henser-BrownhillT, MonserratJ, et al. . Target-specific precision of CRISPR-mediated genome editing. Mol Cell, 2019, 734699-713.

[46]

ShenMW, ArbabM, HsuJY, et al. . Predictable and precise template-free CRISPR editing of pathogenic variants. Nature, 2018, 5637733646-51.

[47]

ShouJ, LiJ, LiuY. Precise and predictable CRISPR chromosomal rearrangements reveal principles of Cas9-mediated nucleotide insertion. Mol Cell, 2018, 714498-509.

[48]

YehCD, RichardsonCD, CornJE. Advances in genome editing through control of DNA repair pathways. Nat Cell Biol, 2019, 21121468-78.

[49]

NiuY, ShenB, CuiY, ChenY, WangJ, WangL, et al. . Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 2014, 1564836-43.

[50]

RanFA, HsuPD, WrightJ, AgarwalaV, ScottDA, ZhangF. Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 2013, 8112281-308.

[51]

KimS, KimD, ChoSW, KimJ, KimJS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res, 2014, 2461012-9.

[52]

ZurisJA, ThompsonDB, ShuY, GuilingerJP, BessenJL, HuJH, et al. . Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol, 2015, 33173-80.

[53]

ParkJ, ChoeS. DNA-free genome editing with preassembled CRISPR/Cas9 ribonucleoproteins in plants. Transgenic Res, 2019, 28261-4.

[54]

Gust B, Challis GL, Fowler K et al. (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proceedings of the National Academy of Sciences 100(4):1541–1546. https://doi.org/10.1073/pnas.0337542100

[55]

WangHH, IsaacsFJ, CarrPA, et al. . Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 4607257894-8.

[56]

LiangS, MaN, LiX, et al. . A Guanidinobenzol-Rich Polymer overcoming Cascade Delivery barriers for CRISPR-Cas9 Genome Editing. Nano Lett, 2024, 24236872-80.

[57]

ZhangMM, WongFT, WangY, et al. . CRISPR–Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat Chem Biol, 2017, 136607-9.

[58]

ZengH, WenS, XuW, et al. . Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA (sm) combined system. Appl Microbiol Biotechnol, 2015, 99: 10575-85.

[59]

TongY, CharusantiP, ZhangL, et al. . CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol, 2015, 491020-9.

[60]

AlbertiF, CorreC. Editing streptomycete genomes in the CRISPR/Cas9 age. Nat Prod Rep, 2019, 3691237-48.

[61]

QinZ, MunnochJT, DevineR, et al. . Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants. Chem Sci, 2017, 843218-27.

[62]

LowZJ, PangLM, DingY. Identification of a biosynthetic gene cluster for the polyene macrolactam sceliphrolactam in a Streptomyces strain isolated from mangrove sediment. Sci Rep, 2018, 811594.

[63]

TongY, WeberT, LeeSY. CRISPR/Cas-based genome engineering in natural product discovery. Nat Prod Rep, 2019, 3691262-80.

[64]

JiaH, ZhangL, WangT, et al. . Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus. Microbiology, 2017, 16381148-55.

[65]

ZhangMM, WangY, AngEL. Engineering microbial hosts for production of bacterial natural products. Nat Prod Rep, 2016, 338963-87.

[66]

MougiakosI, MohanrajuP, BosmaEF, et al. . Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Nat Commun, 2017, 811647.

[67]

MougiakosI, BosmaEF, WeeninkK, et al. . Efficient genome editing of a facultative thermophile using mesophilic spCas9. ACS Synth Biol, 2017, 65849-61.

[68]

BernheimA, Calvo-VillamañánA, BasierC, et al. . Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria. Nat Commun, 2017, 812094.

[69]

PetersJM, ColavinA, ShiH, et al. . A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell, 2016, 16561493-506.

[70]

AltenbuchnerJ. Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. Appl Environ Microbiol, 2016, 82175421-7.

[71]

LiK, CaiD, WangZ, et al. . Development of an efficient genome editing tool in Bacillus licheniformis using CRISPR-Cas9 nickase. Appl Environ Microbiol, 2018, 84602608-17.

[72]

McAllisterKN, BouillautL, KahnJN, et al. . Using CRISPR-Cas9-mediated genome editing to generate C. Difficile mutants defective in selenoproteins synthesis. Sci Rep, 2017, 7114672.

[73]

NegahdaripourM, NezafatN, HajighahramaniN, et al. . Investigating CRISPR-Cas systems in Clostridium botulinum via bioinformatics tools. Infect Genet Evol, 2017, 54: 355-73.

[74]

PyneME, BruderMR, Moo-YoungM, et al. . Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium. Sci Rep, 2016, 6125666.

[75]

WangY, ZhangZT, SeoSO, et al. . Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9. Biotechnol Bioeng, 2016, 113122739-43.

[76]

WangY, ZhangZT, SeoSO, et al. . Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable clean mutant selection in Clostridium beijerinckii as an example. ACS Synth Biol, 2016, 57721-32.

[77]

WaselsF, Jean-MarieJ, CollasF, et al. . A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum. J Microbiol Methods, 2017, 140: 5-11.

[78]

LiQ, ChenJ, MintonNP, et al. . CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol J, 2016, 117961-72.

[79]

LakhawatSS, MalikN, KumarV, et al. . Implications of CRISPR-Cas9 in developing next generation biofuel: a mini-review. Curr Protein Pept Sci, 2022, 239574-84.

[80]

NagarajuS, DaviesNK, WalkerDJF, et al. . Genome editing of Clostridium autoethanogenum using CRISPR/Cas9. Biotechnol Biofuels, 2016, 9: 1-8.

[81]

PatiniosC, de VriesST, DialloM, et al. . Multiplex genome engineering in Clostridium beijerinckii NCIMB 8052 using CRISPR-Cas12a. Sci Rep, 2023, 13110153.

[82]

LiuJ, WangY, LuY, et al. . Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Microb Cell Fact, 2017, 16: 1-17.

[83]

PengF, WangX, SunY, et al. . Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microb Cell Fact, 2017, 16: 1-13.

[84]

ChoJS, ChoiKR, PrabowoCPS, et al. . CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab Eng, 2017, 42: 157-67.

[85]

ParkJ, ShinH, LeeSM, et al. . RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain. Microb Cell Fact, 2018, 17: 1-10.

[86]

JiangY, QianF, YangJ, et al. . CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun, 2017, 8115179.

[87]

CletoS, JensenJV, WendischVF, et al. . Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol, 2016, 55375-85.

[88]

RockJM, HopkinsFF, ChavezA, et al. . Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat Microbiol, 2017, 241-9.

[89]

SinghAK, CaretteX, PotluriLP, et al. . Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system. Nucleic Acids Res, 2016, 4418e143-143.

[90]

CaiP, HanM, ZhangR, et al. . SynBioStrainFinder: a microbial strain database of manually curated CRISPR/Cas genetic manipulation system information for biomanufacturing. Microb Cell Fact, 2022, 21187.

[91]

TanSZ, ReischCR, PratherKL. A robust CRISPR interference gene repression system in Pseudomonas. J Bacteriol, 2018, 200710-1128.

[92]

HaoN, ShearwinKE, DoddIB. Programmable DNA looping using engineered bivalent dCas9 complexes. Nat Commun, 2017, 811628.

[93]

YanMY, YanHQ, RenGX, et al. . CRISPR-Cas12a-assisted recombineering in bacteria. Appl Environ Microbiol, 2017, 8317e00947-17.

[94]

UmenhofferK, DraskovitsG, NyergesA, et al. . Genome-wide abolishment of mobile genetic elements using genome shuffling and CRISPR/Cas-assisted MAGE allows the efficient stabilization of a bacterial chassis. ACS Synth Biol, 2017, 681471-83.

[95]

WuJ, DuG, ChenJ, et al. . Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Sci Rep, 2015, 5113477.

[96]

LiY, LinZ, HuangC, et al. . Metabolic engineering of Escherichia coli using CRISPR–Cas9 meditated genome editing. Metab Eng, 2015, 31: 13-21.

[97]

LiS, JendresenCB, GrünbergerA, et al. . Enhanced protein and biochemical production using CRISPRi-based growth switches. Metab Eng, 2016, 38: 274-84.

[98]

KimSK, HanGH, SeongW, et al. . CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab Eng, 2016, 38: 228-40.

[99]

LvL, RenYL, ChenJC, et al. . Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P (3HB-co-4HB) biosynthesis. Metab Eng, 2015, 29: 160-8.

[100]

LiangJL, GuoLQ, LinJF, et al. . A novel process for obtaining pinosylvin using combinatorial bioengineering in Escherichia coli. World J Microbiol Biotechnol, 2016, 32: 1-10.

[101]

CressBF, LeitzQD, KimDC, et al. . CRISPRi-mediated metabolic engineering of E. Coli for O-methylated anthocyanin production. Microb Cell Fact, 2017, 16: 1-14.

[102]

WuMY, SungLY, LiH, et al. . Combining CRISPR and CRISPRi systems for metabolic engineering of E. Coli and 1, 4-BDO biosynthesis. ACS Synth Biol, 2017, 6122350-61.

[103]

GaoC, WangS, HuG, et al. . Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning. Biotechnol Bioeng, 2018, 1153661-72.

[104]

KimSK, SeongW, HanGH, et al. . CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli. Microb Cell Fact, 2017, 16: 1-15.

[105]

ZhuX, ZhaoD, QiuH, et al. . The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway. Metab Eng, 2017, 43: 37-45.

[106]

WuJ, ZhangX, ZhuY, et al. . Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin. Sci Rep, 2017, 711459.

[107]

WuJ, ZhouP, ZhangX, et al. . Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli. J Ind Microbiol Biotechnol, 2017, 4471083-95.

[108]

HeoMJ, JungHM, UmJ, et al. . Controlling citrate synthase expression by CRISPR/Cas9 genome editing for n-butanol production in Escherichia coli. ACS Synth Biol, 2017, 62182-9.

[109]

BerdyJ. Bioactive microbial metabolites. J Antibiot, 2005, 5811-26.

[110]

BibbMJ. Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol, 2005, 82208-15.

[111]

VítorAC, HuertasP, LegubeG, et al. . Studying DNA double-strand break repair: an ever-growing Toolbox. Front Mol Biosci, 2020, 7: 24.

[112]

SetoH, ImaiS, TsuruokaT, et al. . Studies on the biosynthesis of Bialaphos (SF-1293) 1. Incorporation of 13 C-AND 2 H-Labeled precursors into Bialaphos. J Antibiot, 1982, 35121719-21.

[113]

OttenSL, Stutzman-EngwallKJ, HutchinsonCR. Cloning and expression of daunorubicin biosynthesis genes from Streptomyces peucetius and S. Peucetius subsp. Caesius. J Bacteriol, 1990, 17263427-34.

[114]

CobbRE, WangY, ZhaoH. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol, 2015, 46723-8.

[115]

XuZ, ParkTJ, CaoH. Advances in mining and expressing microbial biosynthetic gene clusters. Crit Rev Microbiol, 2023, 49118-37.

[116]

YangYJ, WangY, LiZF, et al. . Increasing on-target cleavage efficiency for CRISPR/Cas9-induced large fragment deletion in Myxococcus xanthus. Microb Cell Fact, 2017, 16: 1-15.

[117]

DellaM, PalmbosPL, TsengHM, et al. . Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine. Science, 2004, 3065696683-5.

[118]

ShumanS, GlickmanMS. Bacterial DNA repair by non-homologous end joining. Nat Rev Microbiol, 2007, 511852-61.

[119]

GongC, BongiornoP, MartinsA, et al. . Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C. Nat Struct Mol Biol, 2005, 124304-12.

[120]

Di BellaS, AscenziP, SiarakasS, et al. . Clostridium difficile toxins a and B: insights into pathogenic properties and extraintestinal effects. Toxins, 2016, 85134.

[121]

BartlettJG, GerdingDN. Clinical recognition and diagnosis of Clostridium difficile infection. Clin Infect Dis, 2008, 46: S12-8.

[122]

RossiF, RizzottiL, FelisGE, et al. . Horizontal gene transfer among microorganisms in food: current knowledge and future perspectives. Food Microbiol, 2014, 42: 232-43.

[123]

PirazziniM, RossettoO, EleopraR, et al. . Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol Rev, 2017, 692200-35.

[124]

PidotS, IshidaK, CyruliesM, et al. . Discovery of clostrubin, an exceptional polyphenolic polyketide antibiotic from a strictly anaerobic bacterium. Angew Chem, 2014, 126307990-3.

[125]

WangY, BlaschekHP. Optimization of butanol production from tropical maize stalk juice by fermentation with Clostridium beijerinckii NCIMB 8052. Bioresour Technol, 2011, 102219985-90.

[126]

WangY, ZhangZT, SeoSO, et al. . Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J Biotechnol, 2015, 200: 1-5.

[127]

Wang ShaoHuaWS, Dong ShengDS, Wang PiXiangWP, et al. . Genome editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 system. Appl Environ Microbiol, 2017, 83: e00233-17.

[128]

GrossH, LoperJE. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep, 2009, 26111408-46.

[129]

El-SayedAK, HothersallJ, CooperSM, et al. . Characterization of the mupirocin biosynthesis gene cluster from Pseudomonas fluorescens NCIMB 10586. Chem Biol, 2003, 105419-30.

[130]

AparicioT, de LorenzoV, Martínez-GarcíaE. CRISPR/Cas9‐based counterselection boosts recombineering efficiency in Pseudomonas putida. Biotechnol J, 2018, 1351700161.

[131]

NikelPI, de LorenzoV. Metabolic engineering of Pseudomonas. Metabolic Engineering: Concepts Appl, 2021, 13: 519-50.

[132]

SrivastavaP, DebJK. Gene expression systems in corynebacteria. Protein Exp Purif, 2005, 402221-9.

[133]

BeckerJ, WittmannC. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health‐care products. Angew Chem Int Ed, 2015, 54113328-50.

[134]

LindnerSN, PetrovDP, HagmannCT, et al. . Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains. Appl Environ Microbiol, 2013, 7982588-95.

[135]

SawadaK, Zen-InS, WadaM, et al. . Metabolic changes in a pyruvate kinase gene deletion mutant of Corynebacterium glutamicum ATCC 13032. Metab Eng, 2010, 124401-7.

[136]

RiedelC, RittmannD, DangelP, et al. . Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J Mol Microbiol Biotechnol, 2001, 34573-83PMID: 11565516

[137]

YimH, HaselbeckR, NiuW, et al. . Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nat Chem Biol, 2011, 77445-52.

[138]

YangJE, ParkSJ, KimWJ, et al. . One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains. Nat Commun, 2018, 9179.

[139]

RudeMA, SchirmerA. New microbial fuels: a biotech perspective. Curr Opin Microbiol, 2009, 123274-81.

[140]

XuP, GuQ, WangW, et al. . Modular optimization of multi-gene pathways for fatty acids production in E. Coli. Nat Commun, 2013, 411409.

[141]

ZhangW, LiY, TangY. Engineered biosynthesis of bacterial aromatic polyketides in Escherichia coli. Proc Natl Acad Sci, 2008, 1055220683-8.

[142]

XuP, RanganathanS, FowlerZL, et al. . Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab Eng, 2011, 135578-87.

[143]

LeeSK, ChouH, HamTS, et al. . Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol, 2008, 196556-63.

[144]

PleissJ. The promise of synthetic biology. Appl Microbiol Biotechnol, 2006, 734735-9.

[145]

DellomonacoC, FavaF, GonzalezR. The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb Cell Fact, 2010, 9: 1-15.

[146]

JiangW, BikardD, CoxD, et al. . RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol, 2013, 313233-9.

[147]

Nisar MF, Javed A, Ali A et al. (2023) Non-coding rnas: recent advancements in the Development and Biochemistry as Novel Anti-tumor Drug molecules. Current Studies in Health And Life Sciences 239.

[148]

QiLS, LarsonMH, GilbertLA, et al. . Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2021, 1843844.

[149]

KimJ, LeeTS. Enhancing isoprenol production by systematically tuning metabolic pathways using CRISPR interference in E. Coli. Front Bioeng Biotechnol, 2023.

[150]

LiY, LinZ, HuangC, et al. . Metabolic engineering of Escherichia coli using CRISPR–Cas9 meditated genome editing. Metab Eng, 2015, 31: 13-21.

[151]

AjikumarPK, XiaoWH, TyoKE, et al. . Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science, 2010, 330600070-4.

[152]

MaimoneTJ, BaranPS. Modern synthetic efforts toward biologically active terpenes. Nat Chem Biol, 2007, 37396-407.

[153]

Pateraki I, Heskes AM, Hamberger B. Cytochromes P450 for terpene functionalisation and metabolic engineering. Biotechnol Isoprenoids. 2015;107–39. https://doi.org/10.1007/10_2014_301.

[154]

DahlRH, ZhangF, Alonso-GutierrezJ, et al. . Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol, 2013, 31111039-46.

[155]

ZhangF, RodriguezS, KeaslingJD. Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol, 2011, 226775-83.

[156]

HsuPD, ScottDA, WeinsteinJA, et al. . DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol, 2013, 319827-32.

[157]

Moreno-MateosMA, VejnarCE, BeaudoinJD, et al. . CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods, 2015, 1210982-8.

[158]

HeigwerF, KerrG, BoutrosM. E-CRISP: fast CRISPR target site identification. Nat Methods, 2014, 112122-3.

[159]

WongN, LiuW, WangX. WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol, 2015, 16: 1-8.

[160]

HodgkinsA, FarneA, PereraS, et al. . WGE: a CRISPR database for genome engineering. Bioinformatics, 2015, 31183078-80.

[161]

RondaC, PedersenLE, HansenHG, et al. . Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool. Biotechnol Bioeng, 2014, 11181604-16.

[162]

PerezAR, PritykinY, VidigalJA, et al. . GuideScan software for improved single and paired CRISPR guide RNA design. Nat Biotechnol, 2017, 354347-9.

[163]

XieS, ShenB, ZhangC, et al. . sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS ONE, 2014, 96e100448.

[164]

BlinK, PedersenLE, WeberT, et al. . CRISPy-web: an online resource to design sgRNAs for CRISPR applications. Synth Syst Biotechnol, 2016, 12118-21.

[165]

LiuH, WeiZ, DominguezA, et al. . CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation. Bioinformatics, 2015, 31223676-8.

[166]

ChariR, YeoNC, ChavezA, et al. . sgRNA scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity. ACS Synth Biol, 2017, 65902-4.

[167]

SelleK, BarrangouR. Harnessing CRISPR–Cas systems for bacterial genome editing. Trends Microbiol, 2015, 234225-32.

[168]

MaruyamaT, DouganSK, TruttmannMC, et al. . Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol, 2015, 335538-42.

[169]

LiG, ZhangX, ZhongC, et al. . Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells. Sci Rep, 2017, 7: 8943.

[170]

DowLE, FisherJ, O’rourkeKP, et al. . Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol, 2015, 334390-4.

[171]

WuX, ScottDA, KrizAJ, et al. . Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol, 2014, 327670-6.

[172]

ShinJ, JiangF, LiuJJ, et al. . Disabling Cas9 by an anti-CRISPR DNA mimic. Sci Adv, 2017, 3: e1701620.

[173]

Chayot R, Montagne B, Mazel D et al. (2010) An end-joining repair mechanism in Escherichia coli. Proceedings of the National Academy of Sciences 107(5):2141–2146. https://doi.org/10.1073/pnas.0906355107

[174]

BowaterR, DohertyAJ. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet, 2006, 22e8.

[175]

HoffG, BertrandC, PiotrowskiE, et al. . Genome plasticity is governed by double strand break DNA repair in Streptomyces. Sci Rep, 2018, 8: 5272.

[176]

BirchA, HäuslerA, HütterR. Genome rearrangement and genetic instability in Streptomyces spp. J Bacteriol, 1990, 17284138-42.

[177]

KomorAC, KimYB, PackerMS, et al. . Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 5337603420-4.

[178]

GaudelliNM, KomorAC, ReesHA, et al. . Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature, 2017, 5517681464-71.

[179]

KuscuC, ParlakM, TufanT, et al. . CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat Methods, 2017, 147710-2.

[180]

BillonP, BryantEE, JosephSA, et al. . CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Mol Cell, 2017, 6761068-79.

[181]

GuoP, ChengQ, XieP, et al. . Characterization of the multiple CRISPR loci on Streptomyces linear plasmid pSHK1. Acta Biochim Biophys Sin, 2011, 438630-9.

[182]

SangalV, FineranPC, HoskissonPA. Novel configurations of type I and II CRISPR–Cas systems in Corynebacterium diphtheriae. Microbiology, 2013, 159Pt102118-26.

[183]

QiuY, WangS, ChenZ, et al. . An active type IE CRISPR-Cas system identified in Streptomyces avermitilis. PLoS ONE, 2016, 112e0149533.

[184]

SidikSM, HuetD, LouridoS. CRISPR-Cas9-based genome-wide screening of Toxoplasma Gondii. Nat Protoc, 2018, 132307-23.

[185]

LonowskiLA, NarimatsuY, RiazA, et al. . Genome editing using FACS enrichment of nuclease-expressing cells and indel detection by amplicon analysis. Nat Protoc, 2017, 123581-603.

[186]

NarimatsuY, JoshiHJ, YangZ, et al. . A validated gRNA library for CRISPR/Cas9 targeting of the human glycosyltransferase genome. Glycobiology, 2018, 285295-305.

[187]

PusapatiGV, KongJH, PatelBB, et al. . CRISPR screens uncover genes that regulate target cell sensitivity to the morphogen sonic hedgehog. Dev Cell, 2018, 441113-29.

[188]

NajmFJ, StrandC, DonovanKF, et al. . Orthologous CRISPR–Cas9 enzymes for combinatorial genetic screens. Nat Biotechnol, 2018, 362179-89.

[189]

ChoS, ChoeD, LeeE, et al. . High-level dCas9 expression induces abnormal cell morphology in Escherichia coli. ACS Synth Biol, 2018, 741085-94.

[190]

LiXT, JunY, ErickstadMJ, et al. . tCRISPRi: tunable and reversible, one-step control of gene expression. Sci Rep, 2016, 6139076.

[191]

LiXT, SouC, JunS. Protocol for construction of a tunable CRISPR interference (tCRISPRi) strain for Escherichia coli. Bio-protocol, 2017, 7192574-2574.

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

440

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/