PDF
Abstract
Anaerobic digestion (AD) systems generate biogas from protein-rich waste, with certain anaerobes modulating gene regulatory networks (GRNs) to manage ammonia toxicity. This study reconstructs GRN models for five key anaerobes—a hyper-ammonia-producing anaerobe Acetoanaerobium sticklandii H1, an anaerobic sulfur-reducing bacterium Desulfovibrio vulgaris Hildenborough, a hydrogenotrophic methanogen Methanothermobacter thermautotrophicus ΔH, a heterotrophic methanogen Methanosarcina mazei Gö1, and a methylotrophic methanogen Methanoculleus bourgensis MS2T—using genome-wide data to understand their metabolic regulation in AD processes. These GRNs integrate gene regulatory elements, thereby revealing species-specific adaptations that facilitate ammonia tolerance, substrate metabolism, and methane production. Regulatory elements, such as ExsA, PtxR, and GadW, influence pathways for carbon, nitrogen, and energy metabolism. A. sticklandii and M. mazei were crucial for carbon source utilization, whereas M. bourgensis adapted to ammonium-rich conditions without a typical ammonium uptake system. The results of our study provide insights into the metabolic interactions and regulatory roles within biogas-producing communities. This work proposes a framework for designing synthetic microbial communities to enhance biomethane yield from protein-based substrates, supporting AD efficiency improvements.
Keywords
Gene expression
/
Regulatory network
/
Systems biology
/
Methanogens
/
Ammonia tolerance
/
Biomethanation
/
Protein waste
/
Biological Sciences
/
Biochemistry and Cell Biology
Cite this article
Download citation ▾
L. Thamanna, P. Chellapandi.
Deciphering metabolic regulatory mechanisms in vital anaerobes for enhanced biogas production from protein-rich waste.
Systems Microbiology and Biomanufacturing, 2024, 5(2): 819-842 DOI:10.1007/s43393-024-00320-5
| [1] |
AmmarEM, WangX, RaoCV. Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: arabinose, lactose, and xylose. Sci Rep, 2018, 8: 609.
|
| [2] |
AnsariMI, SchiwonK, MalikA, GrohmannE. Biofilm formation by environmental bacteria. Environmental protection strategies for sustainable development, 2012DordrechtSpringer341-377.
|
| [3] |
Arrieta-OrtizML, ImmanuelSR, TurkarslanS, WuWJ, GirinathanBP, WorleyJN, DiBenedettoN, SoutourinaO, PeltierJ, DupuyB, BryL. Predictive regulatory and metabolic network models for systems analysis of Clostridioides difficile. Cell Host Microbe, 2021, 29111709-1723.
|
| [4] |
BharathiM, ChellapandiP. Phylogenomic proximity and metabolic discrepancy of Methanosarcina mazei Go1 across methanosarcinal genomes. Biosystems, 2017, 155: 20-28.
|
| [5] |
BharathiM, ChellapandiP. Intergenomic evolution and metabolic cross-talk between rumen and thermophilic autotrophic methanogenic archaea. Mol Phylogenet Evol, 2017, 107: 293-304.
|
| [6] |
BharathiM, ChellapandiP. Reconstruction and analysis of transcriptome regulatory network of Methanobrevibacter ruminantium M1. Gene Rep, 2022, 26. 101489
|
| [7] |
BiswasS, AcharyyaS. Neural model of gene regulatory network: a survey on supportive meta-heuristics. Theory Biosci, 2016, 1351–21-9.
|
| [8] |
BouillautL, SelfWT, SonensheinAL. Proline-dependent regulation of Clostridium difficile Stickland metabolism. J Bacteriol, 2013, 195: 844-854.
|
| [9] |
BräsenC, EsserD, RauchB, SiebersB. Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev, 2014, 78: 89-175.
|
| [10] |
BrioukhanovAL, DurandMC, DollaA, AubertC. Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide: enzymatic and transcriptional analyses. FEMS Microbiol Lett, 2010, 310: 175-181.
|
| [11] |
BrownePD, Cadillo-QuirozH. Contribution of transcriptomics to systems-level understanding of methanogenic archaea. Archaea, 2013, 1586369
|
| [12] |
BuckelW, BuckelRK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta (BBA) Bioenerget., 2013, 1827294-113.
|
| [13] |
CaspiR, BillingtonR, FulcherCA, KeselerIM, KothariA, KrummenackerM, LatendresseM, MidfordPE, OngQ, OngWK, PaleyS, SubhravetiP, KarpPD. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res, 2018, 46: D633-D639.
|
| [14] |
ChenT, BaiD, GongC, CaoY, YanX, PengR. Hydrogen sulfide mitigates mitochondrial dysfunction and cellular senescence in diabetic patients: Potential therapeutic applications. Biochem Pharmacol, 2024, 25: 116556.
|
| [15] |
Centore M, Hochman G, Zilberman D (2014) Worldwide survey of biodegradable feedstocks, waste-to-energy technologies, and adoption of technologies. In: Modeling, dynamics, optimization and bioeconomics I: contributions from ICMOD 2010 and the 5th bioeconomy conference. Springer International Publishing, Cham. pp 163–181
|
| [16] |
ChellapandiP, SaranyaS. Biogas starter from genome-scale data for methanogenic bioprocessing of protein waste. Syst Microbiol Biomanuf, 2024, 4: 542-563.
|
| [17] |
ChellapandiP, SreekuttyVP, SaranyaS. Methanogens and what they tell us about how life might survive on Mars. Crit Rev Biochem Mol Biol, 2024, 59: 337-362.
|
| [18] |
ChoBK, FederowiczSA, EmbreeM, ParkYS, KimD, PalssonBØ. The PurR regulon in Escherichia coli K-12 MG1655. Nucleic Acids Res, 2011, 39: 6456-6464.
|
| [19] |
ChoiG, ChoiSH. Complex regulatory networks of virulence factors in Vibrio vulnificus. Trends Microbiol, 2022, 30: 1205-1216.
|
| [20] |
CoulsonTJD, MalenfantRM, PattenCL. Characterization of the TyrR regulon in the rhizobacterium Enterobacter ludwigii UW5 reveals overlap with the CpxR envelope stress response. J Bacteriol, 2020, 203: 10-128.
|
| [21] |
De SouzaRS, ArmanhiJS, ArrudaP. From microbiome to traits: designing synthetic microbial communities for improved crop resiliency. Front Plant Sci, 2020, 11: 1179.
|
| [22] |
DengA, WangT, WangJ, LiL, WangX, LiuL, WenT. Adaptive mechanisms of Bacillus to near space extreme environments. Sci Total Environ, 2023, 886. 163952
|
| [23] |
DeutscherJ, AkéFMD, DerkaouiM, ZébréAC, CaoTN, BouraouiH, KentacheT, MokhtariA, MilohanicE, JoyetP. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev, 2014, 78: 231-256.
|
| [24] |
DurandS, GuillierM. Transcriptional and post-transcriptional control of the nitrate respiration in bacteria. Front Mol Biosci, 2021, 8. 667758
|
| [25] |
EhlersC, WeidenbachK, VeitK, DeppenmeierU, MetcalfWW, SchmitzRA. Development of genetic methods and construction of a chromosomal glnK 1 mutant in Methanosarcina mazei strain Gö1. Mol Genet Genom, 2005, 273: 290-298.
|
| [26] |
FinnRD, CoggillP, EberhardtRY, EddySR, MistryJ, MitchellAL, PotterSC, PuntaM, QureshiM, Sangrador-VegasA, SalazarGA, TateJ, BatemanA. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res, 2016, 44: D279-D285.
|
| [27] |
FloresE, PicossiS, ValladaresA, HerreroA. Transcriptional regulation of development in heterocyst-forming cyanobacteria. BBA Gene Regulat Mech, 2019, 1862: 673-684
|
| [28] |
FonknechtenN, ChaussonnerieS, TricotS, LajusA, AndreesenJR, PerchatN, PelletierE, GouyvenouxM, BarbeV, SalanoubatM, Le PaslierD. Clostridium sticklandii, a specialist in amino acid degradation: revisiting its metabolism through its genome sequence. BMC Genom, 2010, 11: 1-2.
|
| [29] |
GaimsterH, AlstonM, RichardsonDJ, GatesAJ, RowleyG. Transcriptional and environmental control of bacterial denitrification and N2O emissions. FEMS Microbiol Lett, 2018, 365: fnx277.
|
| [30] |
GalliF, PiroddiM, AnnettiC, AisaC, FloridiE, FloridiA. Oxidative stress and reactive oxygen species. Cardiovasc Disord Hemodial, 2005, 149: 240-260.
|
| [31] |
GaoP, ZhangX, HuangX, ChenZ, MarietouA, HolmkvistL, QuL, FinsterK, GongX. Genomic insight of sulfate reducing bacterial genus Desulfofaba reveals their metabolic versatility in biogeochemical cycling. BMC Genom, 2023, 241209.
|
| [32] |
Gao Y, Poudel S, Seif Y, Shen Z, Palsson BO (2021) Elucidating the CodY regulon in Staphylococcus aureus USA300 substrains. bioRxiv:2021-2001.
|
| [33] |
GeanacopoulosM, AdhyaS. Functional characterization of roles of GalR and GalS as regulators of the gal regulon. J Bacteriol, 1997, 179: 228-234.
|
| [34] |
GilmoreSP, HenskeJK, SextonJA, SolomonKV, SeppäläS, YooJI, HuyettLM, PressmanA, CoganJZ, KivensonV, PengX. Genomic analysis of methanogenic archaea reveals a shift towards energy conservation. BMC Genom, 2017, 18: 1-4.
|
| [35] |
GuGuY, JiangY, YangS, JiangW. Utilization of economical substrate-derived carbohydrates by solventogenic clostridia: pathway dissection, regulation and engineering. Curr Opin Biotechnol, 2014, 29: 124-131.
|
| [36] |
HackleyRK, SchmidAK. Global transcriptional programs in archaea share features with the eukaryotic environmental stress response. J Mol Biol, 2019, 431204147-4166.
|
| [37] |
HallM, GrundströmC, BegumA, LindbergMJ, SauerUH, AlmqvistF, JohanssonJ, Sauer-ErikssonAE. Structural basis for glutathione-mediated activation of the virulence regulatory protein PrfA in Listeria. Proc Natl Acad Sci USA, 2016, 113: 14733-14738.
|
| [38] |
HemmeCL, WallJD. Genomic insights into gene regulation of Desulfovibrio vulgaris Hildenborough. OMICS Spring, 2004, 8143-55.
|
| [39] |
HorbalL, LuzhetskyyA. Dual control system—a novel scaffolding architecture of an inducible regulatory device for the precise regulation of gene expression. Metab Eng, 2016, 37: 11-23.
|
| [40] |
Hove-JensenB, AndersenKR, KilstrupM, MartinussenJ, SwitzerRL, WillemoësM. Phosphoribosyl diphosphate (PRPP): biosynthesis, enzymology, utilization, and metabolic significance. Microbiol Mol Biol Rev, 2017, 81: 10-128.
|
| [41] |
HuangJ, YaoC, SunY, JiQ, DengX. Virulence-related regulatory network of Pseudomonas syringae. Comput Struct Biotechnol J, 2022, 20: 6259-6270.
|
| [42] |
HubertF, NgoTE, MooreB, GerwickW, LukowskiA, AvalonN. Enzymatic halogenation of terminal alkynes. J Am Chem Soc, 2023, 1453418716-18721.
|
| [43] |
IhekwabaAE, MuraI, WalshawJ, PeckMW, BarkerGC. An integrative approach to computational modelling of the gene regulatory network controlling Clostridium botulinum type A1 toxin production. PLoS Comput Biol, 2016, 1211. e1005205
|
| [44] |
Jiménez-LeivaA, CabreraJJ, BuenoE, TorresMJ, SalazarS, BedmarEJ, DelgadoMJ, MesaS. Expanding the regulon of the Bradyrhizobium diazoefficiens NnrR transcription factor: new insights into the denitrification pathway. Front Microbiol, 2019, 10: 1926.
|
| [45] |
KanehisaM, SatoY, FurumichiM, MorishimaK, TanabeM. New approach for understanding genome variations in KEGG. Nucleic Acids Res, 2019, 47D1D590-D595.
|
| [46] |
KaushikMS, SinghP, TiwariB, MishraAK. Ferric uptake regulator (FUR) protein: properties and implications in cyanobacteria. Ann Microbiol, 2016, 66: 61-75.
|
| [47] |
KazakovAE, RajeevL, ChenA, LuningEG, DubchakI, MukhopadhyayA, NovichkovPS. σ54-dependent regulome in Desulfovibrio vulgaris Hildenborough. BMC Genom, 2015, 16: 919.
|
| [48] |
KimD, SeoSW, GaoY, NamH, GuzmanGI, ChoBK, PalssonBO. Systems assessment of transcriptional regulation on central carbon metabolism by Cra and CRP. Nucleic Acids Res, 2018, 46: 2901-2917.
|
| [49] |
KimHH, BasakB, LeeDY, ChungWJ, ChangSW, KwakMJ, KimSH, HwangJK, KeumJK, ParkHK, HaGS, KimKH, JeonB. Insights into prokaryotic metataxonomics and predictive metabolic function in field-scale anaerobic digesters treating various organic wastes. Renew Sustain Energy Rev, 2023, 187. 113685
|
| [50] |
KimuraT, KobayashiK. Role of glutamate synthase in biofilm formation by Bacillus subtilis. J Bacteriol, 2020, 202: 10-128.
|
| [51] |
KushkevychIV, HnatushSO, MutenkoHV. Glutathione level of Desulfovibrio desulfuricans IMV K-6 under the influence of heavy metal salts. Ukr Biokhim Zh (1999), 2011, 836104-109
|
| [52] |
LetunicI, DoerksT, BorkP. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res, 2012, 40Database issueD302-D305.
|
| [53] |
LevdikovVM, BlagovaE, YoungVL, BelitskyBR, LebedevA, SonensheinAL, WilkinsonAJ. Structure of the branched-chain amino acid and GTP-sensing global regulator, CodY, from Bacillus subtilis. J Biol Chem, 2017, 292: 2714-2728.
|
| [54] |
LeynSA, SuvorovaIA, KazakovAE, RavcheevDA, StepanovaVV, NovichkovPS, RodionovDA. Comparative genomics and evolution of transcriptional regulons in Proteobacteria. Microb Genom, 2016, 2e000061
|
| [55] |
LeynSA, SuvorovaIA, KholinaTD, SherstnevaSS, NovichkovPS, GelfandMS, RodionovDA. Comparative genomics of transcriptional regulation of methionine metabolism in Proteobacteria. PLoS ONE, 2014, 911. e113714
|
| [56] |
LiX, ChenF, WangX, XiongY, LiuZ, LinY, NiK, YangF. Innovative utilization of herbal residues: exploring the diversity of mechanisms beneficial to regulate anaerobic fermentation of alfalfa. Bioresour Technol, 2022, 360. 127429
|
| [57] |
LiangY, MaA, ZhuangG. Construction of environmental synthetic microbial consortia: based on engineering and ecological principles. Front Microbiol, 2022, 13. 829717
|
| [58] |
LimHG, SeoSW, JungGY. Engineered Escherichia coli for simultaneous utilization of galactose and glucose. Bioresour Technol, 2013, 135: 564-567.
|
| [59] |
LingZ, ThakurN, El-DalatonyMM, SalamaES, LiX. Protein biomethanation: Insight into the microbial nexus. Trends Microbiol, 2022, 30: 69-78.
|
| [60] |
LuoQ, GrohJL, BallardJD, KrumholzLR. Identification of genes that confer sediment fitness to Desulfovibrio desulfuricans G20. Appl Environ Microbiol, 2007, 73196305-6312.
|
| [61] |
MaZ, GongS, RichardH, TuckerDL, ConwayT, FosterJW. GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. Mol Microbiol, 2003, 4951309-1320.
|
| [62] |
Marchler-BauerA, BoY, HanL, HeJ, LanczyckiCJ, LuS, ChitsazF, DerbyshireMK, GeerRC, GonzalesNR, GwadzM, HurwitzDI, LuF, MarchlerGH, SongJS, ThankiN, WangZ, YamashitaRA, ZhangD, ZhengC, GeerLY, BryantSH. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res, 2017, 45: D200-D203.
|
| [63] |
Martinez-PastorM, TonnerPD, DarnellCL, SchmidAK. Transcriptional regulation in archaea: from individual genes to global regulatory networks. Annu Rev Genet, 2017, 51: 143-170.
|
| [64] |
MasepohlB. Regulation of nitrogen fixation in photosynthetic purple nonsulfur bacteria. Modern topics in the phototrophic prokaryotes, 2017ChamSpringer1-25
|
| [65] |
MausI, WibbergD, StantscheffR, StolzeY, BlomJ, EikmeyerFG, FracowiakJ, KönigH, PühlerA, SchlüterA. Insights into the annotated genome sequence of Methanoculleus bourgensis MS2T, related to dominant methanogens in biogas-producing plants. J Biotechnol, 2015, 201: 43-53.
|
| [66] |
MaxonME, WigboldusJ, BrotN, WeissbachH. Structure-function studies on Escherichia coli MetR protein, a putative prokaryotic leucine zipper protein. Proc Natl Acad Sci USA, 1990, 87: 7076-7079.
|
| [67] |
MenonS, WangS. Structure of the response regulator PhoP from Mycobacterium tuberculosis reveals a dimer through the receiver domain. Biochemistry, 2011, 50: 5948-5957.
|
| [68] |
MirouzeN, BidnenkoE, NoirotP, AugerS. Genome-wide mapping of TnrA-binding sites provides new insights into the TnrA regulon in Bacillus subtilis. Microbiol Open, 2015, 4: 423-435.
|
| [69] |
MünchR, HillerK, GroteA, ScheerM, KleinJ, SchobertM, JahnD. Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. Bioinformatics, 2005, 21: 4187-4189.
|
| [70] |
OguraM, TsukaharaK, HayashiK, TanakaT. The Bacillus subtilis NatK–NatR two-component system regulates expression of the natAB operon encoding an ABC transporter for sodium ion extrusion. Microbiology, 2007, 153: 667-675.
|
| [71] |
OverbeekR, OlsonR, PuschGD, OlsenGJ, DavisJJ, DiszT, EdwardsRA, GerdesS, ParrelloB, ShuklaM, VonsteinV, WattamAR, XiaF, StevensR. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res, 2014, 42: D206-D214.
|
| [72] |
PappeschR, WarnkeP, MikkatS, NormannJ, Wisniewska-KucperA, HuschkaF, WittmannM, KhaniA, SchwengersO, Oehmcke-HechtS, HainT, KreikemeyerB, PatengeN. The regulatory small RNA marS supports virulence of Streptococcus pyogenes. Sci Rep, 2017, 7: 12241.
|
| [73] |
ParitoshK, KushwahaSK, YadavM, PareekN, ChawadeA, VivekanandV. Food waste to energy: an overview of sustainable approaches for food waste management and nutrient recycling. Biomed Res Int, 2017, 1: 2370927
|
| [74] |
LespinatPA, BerlierYM, FauqueGD, TociR, DenariazG, LeGallJ. The relationship between hydrogen metabolism, sulfate reduction and nitrogen fixation in sulfate reducers. J Ind Microbiol, 1987, 16383-388.
|
| [75] |
PrathivirajR, ChellapandiP. Functional annotation of operome from Methanothermobacter thermautotrophicus ΔH: an insight to metabolic gap filling. Int J Biol Macromol, 2019, 123: 350-362.
|
| [76] |
PrathivirajR, ChellapandiP. Comparative genomic analysis reveals starvation survival systems in Methanothermobacter thermautotrophicus ΔH. Anaerobe, 2020, 64. 102216
|
| [77] |
PrathivirajR, ChellapandiP. Modeling a global regulatory network of Methanothermobacter thermautotrophicus strain ∆H. Netw Model Anal Health Inform Bioinform, 2020, 9: 17.
|
| [78] |
ProndzinskyP, ToyodaS, McGlynnSE. The methanogen core and pangenome: conservation and variability across biology’s growth temperature extremes. DNA Res, 2023, 301dsac048.
|
| [79] |
RajeevL, LuningEG, DehalPS, PriceMN, ArkinAP, MukhopadhyayA. Systematic mapping of two component response regulators to gene targets in a model sulfate reducing bacterium. Genome Biol, 2011, 1210R99.
|
| [80] |
RamelF, BrasseurG, PieulleL, ValetteO, Hirschler-RéaA, FardeauML, DollaA. Growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: impact of the membrane-bound oxygen reductases. PLoS ONE, 2015, 10. e0123455
|
| [81] |
RamosRE, MárquezMC. Volatile fatty acids from household food waste: production and kinetics. ChemEngineering, 2024, 8584.
|
| [82] |
RamsayIR, PullammanappallilPC. Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation, 2001, 12: 247-257.
|
| [83] |
ReichlenMJ, VepacheduVR, MurakamiKS, FerryJG. MreA functions in the global regulation of methanogenic pathways in Methanosarcina acetivorans. MBio, 2012, 34e00189-12.
|
| [84] |
EggenRIL. Regulated gene expression in methanogens. FEMS Microbiol Rev, 1994, 152–3251-260.
|
| [85] |
Rodrigues-OliveiraT, BelmokA, VasconcellosD, SchusterB, KyawCM. Archaeal S-layers: overview and current state of the art. Front Microbiol, 2017, 8: 2597.
|
| [86] |
RojaB, ThamannaL, ChellapandiP. Reconstruction and analysis of the transcriptome regulatory network of Clostridium botulinum type a3 str. Loch maree. Asian J Microbiol Biotechnol Environ Sci, 2023, 252263-269.
|
| [87] |
RomeroL, Contreras-RiquelmeS, LiraM, MartinAJ, Perez-RuedaE. Homology-based reconstruction of regulatory networks for bacterial and archaeal genomes. Front Microbiol, 2022, 13. 923105
|
| [88] |
RundellEA, CommodoreN, GoodmanAL, KazmierczakBI. A screen for antibiotic resistance determinants reveals a fitness cost of the flagellum in Pseudomonas aeruginosa. J Bacteriol, 2020, 202: 10-128.
|
| [89] |
Sánchez-JiménezA, LlamasMA, Marcos-TorresFJ. Transcriptional regulators controlling virulence in Pseudomonas aeruginosa. Int J Mol Sci, 2023, 241511895.
|
| [90] |
Sancho J, Maity R, Aínsa JA, Gaetani M, Rinaldo S, Cutruzzolá F, Liberati FR, Zhang X (2023) Merging multi-omics with proteome integral solubility alteration unveils antibiotic mode of action. bioRxiv:2023-2009.
|
| [91] |
SanchukiHB, GravinaF, RodriguesTE, GerhardtEC, PedrosaFO, SouzaEM, RaittzRT, ValdameriG, de SouzaGA, HuergoLF. Dynamics of the Escherichia coliproteome in response to nitrogen starvation and entry into the stationary phase. Biochim Biophys Acta (BBA) Proteins Proteom, 2017, 1865: 344-352.
|
| [92] |
SangavaiC, BharathiM, GaneshSP, ChellapandiP. Kinetic modeling of Stickland reactions-coupled methanogenesis for a methanogenic culture. AMB Express, 2019, 9: 82.
|
| [93] |
SangavaiC, ChellapandiP. Amino acid catabolism-directed biofuel production in Clostridium sticklandii: an insight into model-driven systems engineering. Biotechnol Rep, 2017, 16: 32-43.
|
| [94] |
SangavaiC, ChellapandiP. A metabolic study to decipher amino acid catabolism-directed biofuel synthesis in Acetoanaerobium sticklandii DSM 519. Amino Acids, 2019, 51: 1397-1407.
|
| [95] |
SangavaiC, ChellapandiP. Growth-associated catabolic potential of Acetoanaerobium sticklandii DSM 519 on gelatin and amino acids. J Basic Microbiol, 2020, 60: 882-893.
|
| [96] |
SangavaiC, PrathivirajR, ChellapandiP. Functional prediction, characterization and categorization of operome from Acetoanaerobium sticklandii DSM 519. Anaerobe, 2020, 61. 102088
|
| [97] |
SaranyaS, ThamannaL, ChellapandiP. Unveiling the potential of systems biology in biotechnology and biomedical research. Syst Microbiol Biomanuf, 2024, 4: 1217-1238.
|
| [98] |
SaranyaS, ThamannaL, SreekuttyVP, DhayanithiS, ChellapandiP. Bioremediation of oil and natural gas industry waste using methanogens: current status and future perspective to biohythane production. Arab J Sci Eng, 2024.
|
| [99] |
SaujetL, PereiraFC, HenriquesAO, Martin-VerstraeteI. The regulatory network controlling spore formation in Clostridium difficile. FEMS Microbiol Lett, 2014, 35811.
|
| [100] |
ShannonP, MarkielA, OzierO, BaligaNS, WangJT, RamageD, AminN, SchwikowskiB, IdekerT. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498-2504.
|
| [101] |
ShresthaM, XiaoY, RobinsonH, SchubotFD. Structural analysis of the regulatory domain of ExsA, a key transcriptional regulator of the type three secretion system in Pseudomonas aeruginosa. PLoS ONE, 2015, 10. e0136533
|
| [102] |
SihlanguE, LusebaD, RegnierT, MagamaP, ChiyanzuI, NephaweKA. Investigating methane, carbon dioxide, ammonia, and hydrogen sulphide content in agricultural waste during biogas production. Sustainability, 2024, 16125145.
|
| [103] |
StoyanchevaG, KabaivanovaL, HubenovV, ChorukovaE. Metagenomic analysis of bacterial, archaeal and fungal diversity in two-stage anaerobic biodegradation for production of hydrogen and methane from corn steep liquor. Microorganisms, 2023, 11: 1263.
|
| [104] |
StrazzeraG, BattistaF, GarciaNH, FrisonN, BolzonellaD. Volatile fatty acids production from food wastes for biorefinery platforms: a review. J Environ Manag, 2018, 226: 278-288.
|
| [105] |
SukphunP, SittijundaS, ReungsangA. Volatile fatty acid production from organic waste with the emphasis on membrane-based recovery. Fermentation, 2021, 73159.
|
| [106] |
TaoX, LiY, HuangH, ChenY, LiuP, LiP. Desulfovibrio vulgaris Hildenborough prefers lactate over hydrogen as electron donor. Ann Microbiol, 2014, 64: 451-457.
|
| [107] |
VarmaA, SchönheitP, ThauerRK. Electrogenic sodium ion/proton antiport in Desulfovibrio vulgaris. Arch Microbiol, 1983, 136: 69-73.
|
| [108] |
VeitK, EhlersC, EhrenreichA, SalmonK, HoveyR, GunsalusRP, DeppenmeierU, SchmitzRA. Global transcriptional analysis of Methanosarcina mazei strain Gö1 under different nitrogen availabilities. Mol Genet Genom, 2006, 276: 41-55.
|
| [109] |
WangQ, VenkataramananKP, HuangH, PapoutsakisET, WuCH. Transcription factors and genetic circuits orchestrating the complex, multilayered response of Clostridium acetobutylicum to butanol and butyrate stress. BMC Syst Biol, 2013, 7: 120.
|
| [110] |
WangHZ, YanYC, GouM, YiY, XiaZY, NobuMK, NarihiroT, TangYQ. Response of propionate-degrading methanogenic microbial communities to inhibitory conditions. Appl BiochemBiotechnol, 2019, 189: 233-248.
|
| [111] |
WinterlingKW, LevineAS, YasbinRE, WoodgateR. Characterization of DinR, the Bacillus subtilis SOS repressor. J Bacteriol, 1997, 179: 1698-1703.
|
| [112] |
WormaldRM, RoutSP, MayesW, GomesH, HumphreysPN. Hydrogenotrophic methanogenesis under alkaline conditions. Front Microbiol, 2020, 11: 614227.
|
| [113] |
WuZ, LiuJ, YangH, XiangH. DNA replication origins in archaea. Front Microbiol, 2014, 5: 179.
|
| [114] |
YanM, TreuL, ZhuX, TianH, BasileA, FotidisIA, CampanaroS, AngelidakiI. Insights into ammonia adaptation and methanogenic precursor oxidation by genome-centric analysis. Environ Sci Technol, 2020, 541912568-12582.
|
| [115] |
YangY, ZhangL, HuangH, YangC, YangS, GuY, JiangW. A flexible binding site architecture provides new insights into CcpA global regulation in gram-positive bacteria. MBio, 2017, 8: 10-128.
|
| [116] |
YoonJH, AbdelmohsenK, GorospeM. Post transcriptional gene regulation by long noncoding RNA. J Mol Biol, 2013, 425193723-3730.
|
| [117] |
YoonSH, TurkarslanS, ReissDJ, PanM, BurnJA, CostaKC, LieTJ, SlagelJ, MoritzRL, HackettM, LeighJA. A systems level predictive model for global gene regulation of methanogenesis in a hydrogenotrophic methanogen. Genome Res, 2013, 23111839-1851.
|
| [118] |
ZhangH, DouZ, BiW, YangC, WuX, WangL. Multi-omics study of sulfur metabolism affecting functional microbial community succession during aerobic solid-state fermentation. Bioresour Technol, 2023, 387. 129664
|
| [119] |
ZhangH, OuyangZ, ZhaoN, HanS, ZhengS. Transcriptional regulation of the creatine utilization genes of Corynebacterium glutamicum ATCC 14067 by AmtR, a central nitrogen regulator. Front Bioeng Biotechnol, 2022, 10. 816628
|
| [120] |
ZhangJ, ZhangR, HeQ, JiB, WangH, YangK. Adaptation to salinity: response of biogas production and microbial communities in anaerobic digestion of kitchen waste to salinity stress. J Biosci Bioeng, 2020, 130: 173-178.
|
| [121] |
ZhangW, ChenL, FengH, WangJ, ZengF, XiaoX, JianJ, WangN, PangH. Functional characterization of Vibrio alginolyticus T3SS regulator ExsA and evaluation of its mutant as a live attenuated vaccine candidate in zebrafish (Danio rerio) model. Front Vet Sci, 2022, 9. 938822
|
| [122] |
ZhaoS, ThakurN, SalamaES, ZhangP, ZhangL, XingX, YueJ, SongZ, NanL, YujunS, LiX. Potential applications of protein-rich waste: progress in energy management and material recovery. Resour Conserv Recycl, 2022, 182. 106315
|
| [123] |
ZwickF, LaleR, VallaS. Regulation of the expression level of transcription factor XylS reveals new functional insight into its induction mechanism at the Pm promoter. BMC Microbiol, 2013, 13: 262.
|
Funding
Science and Engineering Research Board, Ministry of Science and Technology, Government of India(EEQ/2020/000095)
RIGHTS & PERMISSIONS
Jiangnan University