Cellulase production using a combination of carrot peel and corn husk (tusa) residues under solid-state fermentation

Vanny Mora-Villalobos, Marcy González-Vargas, Carolina Cortés-Herrera, Carmela Velázquez-Carrillo, María E. Koschny, Natalia Barboza

Systems Microbiology and Biomanufacturing ›› 2024

Systems Microbiology and Biomanufacturing All Journals
Systems Microbiology and Biomanufacturing ›› 2024 DOI: 10.1007/s43393-024-00319-y
Original Article

Cellulase production using a combination of carrot peel and corn husk (tusa) residues under solid-state fermentation

Author information +
History +

Abstract

Agricultural wastes are characterized by bioactive compounds that can be used to produce different byproducts, including enzymes, which are obtained through solid state fermentation (SSF). The goal of this study was to evaluate the initial pH and moisture conditions of a substrate composed of carrot peels and corn husk residues (tusa) by SSF to obtain cellulase enzymes. Carrot and corn wastes were characterized to determine their physicochemical properties, confirming their suitability for the fermentation process. It was found that endoglucanase enzyme activity increased with time and was favored at a humidity of 75% and a pH of 5.2, reaching values above 300 U/mg protein. However, no significant trends were observed in exocellulase activity related to the study´s factors. Although the use of agro-industrial wastes to obtain high-value molecules has been widely studied, combining carrot and corn wastes as a substrate for cellulase production using Cladosporium sp. _V3 (GenBank No. PP931187) isolated from pineapple wastes has been poorly characterized.

Cite this article

Download citation ▾
Vanny Mora-Villalobos, Marcy González-Vargas, Carolina Cortés-Herrera, Carmela Velázquez-Carrillo, María E. Koschny, Natalia Barboza. Cellulase production using a combination of carrot peel and corn husk (tusa) residues under solid-state fermentation. Systems Microbiology and Biomanufacturing, 2024 https://doi.org/10.1007/s43393-024-00319-y
This is a preview of subscription content, contact us for subscripton.

References

[1.]
BhardwajN, KumarB, AgrawalK, VermaP. Current perspective on production and applications of microbial cellulases: a review. Bioresour Bioprocess, 2021, 8: 95
CrossRef Google scholar
[2.]
Biswal D, Mandavgane SA. Biomass waste: a potential feedstock for cellulase production. Curr Status Future Scope Microb Cellulases. 2021;347–59. https://doi.org/10.1016/B978-0-12-821882-2.00017-X.
[3.]
PeriyasamyS, Beula IsabelJ, KavithaS, KarthikV, MohamedBA, GizawDG, et al. . Recent advances in consolidated bioprocessing for conversion of lignocellulosic biomass into bioethanol– a review. Chem Eng J, 2023, 453: 139783
CrossRef Google scholar
[4.]
Chilakamarry CR, Mimi Sakinah AM, Zularisam AW, Sirohi R, Khilji IA, Ahmad N, et al. Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: opportunities and challenges. Bioresour Technol. 2022;343. https://doi.org/10.1016/j.biortech.2021.126065.
[5.]
RanjanR, RaiR, BhattSB, DharP. Technological road map of cellulase: a comprehensive outlook to structural, computational, and industrial applications. Biochem Eng J, 2023, 198: 109020
CrossRef Google scholar
[6.]
BajajP, MahajanR. Cellulase and xylanase synergism in industrial biotechnology. Appl Microbiol Biotechnol, 2019, 103: 8711-24
CrossRef Google scholar
[7.]
El-GendiH, TahaTH, RayJB, SalehAK. Recent advances in bacterial cellulose: a low-cost effective production media, optimization strategies and applications. Cellulose 2022, 2022, 29: 14
CrossRef Google scholar
[8.]
ReisCER, Libardi JuniorN, BentoHBS, CarvalhoAKF, VandenbergheLP, de SoccolS. Process strategies to reduce cellulase enzyme loading for renewable sugar production in biorefineries. Chem Eng J, 2023, 451: 138690
CrossRef Google scholar
[9.]
Sharma A, Tewari R, Rana SS, Soni R, Soni SK, Cellulases. Classification, Methods of Determination and Industrial Applications. Applied Biochemistry and Biotechnology 2016 179:8 2016;179:1346–80. https://doi.org/10.1007/S12010-016-2070-3
[10.]
ChilakamarryCR, MahmoodS, SaffeSNBM, ArifinMA, Bin, GuptaA, SikkandarMY, et al. . Extraction and application of keratin from natural resources: a review. 3 Biotech, 2021, 11: 1-12
CrossRef Google scholar
[11.]
Santos GB, De Sousa A, Filho F, Rêgo J, Rodrigues S, Rodrigues De Souza R. Cellulase production by Aspergillus Niger using urban lignocellulosic waste as substrate: evaluation of different cultivation strategies. J Environ Manage. 2022;305. https://doi.org/10.1016/j.jenvman.2022.114431.
[12.]
AmbayeTG, DjellabiR, VaccariM, PrasadS, AminabhaviM, RtimiT. Emerging technologies and sustainable strategies for municipal solid waste valorization: challenges of circular economy implementation. J Clean Prod, 2023, 423: 138708
CrossRef Google scholar
[13.]
Escudero AgudeloJ, Daza MerchánZ, Gil ZapataJN, Mora MuñozO. Evaluación De las enzimas celulolíticas producidas por hongos nativos mediante fermentación en estado sólido (SSF) utilizando residuos de cosecha de caña de azúcar. Rev Colomb Biotecnol, 2013, 15: 108-17
[14.]
Singhania RR, Adsul M, Pandey A, Patel AK. Cellulases. Current developments in Biotechnology and Bioengineering: production, isolation and purification of Industrial products. Elsevier; 2017. pp. 73–101. https://doi.org/10.1016/B978-0-444-63662-1.00004-X.
[15.]
SrivastavaN, SrivastavaM, ManikantaA, SinghP, RamtekePW, MishraPK, et al. . Production and optimization of Physicochemical Parameters of Cellulase Using Untreated Orange Waste by newly isolated Emericella Variecolor NS3. Appl Biochem Biotechnol, 2017, 183: 601-12
CrossRef Google scholar
[16.]
SuLH, ZhaoS, JiangSX, LiaoXZ, DuanCJ, FengJX. Cellulase with high β-glucosidase activity by Penicillium oxalicum under solid state fermentation and its use in hydrolysis of cassava residue. World J Microbiol Biotechnol, 2017, 33: 1-11
CrossRef Google scholar
[17.]
BansalN, TewariR, SoniR, SoniSK. Production of cellulases from aspergillus Niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag, 2012, 32: 1341-6
CrossRef Google scholar
[18.]
SarangiPK, VivekanandV, MohanakrishnaG, PattnaikB, MuddapurUM, AminabhaviTM. Production of bioactive phenolic compounds from agricultural by-products towards bioeconomic perspectives. J Clean Prod, 2023, 414: 137460
CrossRef Google scholar
[19.]
Cano y PostigoLO, Jacobo-VelázquezDA, Guajardo-FloresD, Garcia AmezquitaLE, García-CayuelaT. Solid-state fermentation for enhancing the nutraceutical content of agrifood by-products: recent advances and its industrial feasibility. Food Biosci, 2021, 41: 100926
CrossRef Google scholar
[20.]
YoonLW, AngTN, NgohGC, ChuaASM. Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass Bioenergy, 2014, 67: 319-38
CrossRef Google scholar
[21.]
Srivastava N, Manikanta · A, Mishra · PK, Upadhyay · SN, Srivastava M, Ramteke PW et al. Fungal Cellulases Prod Biodegradation Agric Waste 2018:75–89. https://doi.org/10.1007/978-981-10-7146-1_4
[22.]
KasanaRC, SalwanR, DharH, DuttS, GulatiA. A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr Microbiol, 2008, 57: 503-7
CrossRef Google scholar
[23.]
Florencio C, Couri S, Farinas CS. Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains. Enzyme Res. 2012;2012. https://doi.org/10.1155/2012/793708
[24.]
Mongeau R, Brassard R. Determination of Neutral Deteigent Fiber in Breakfast cereals: Pentose, Hemicellulose, Cellulose and Lignin Content. J Food Sci 1982;47.
[25.]
MillerGL. Use of Dinitrosalicylic Acid Reagent for determination of reducing Sugar. Anal Chem, 1959, 31: 426-8
CrossRef Google scholar
[26.]
Flores-MaltosDA, MussattoSI, EsquivelJCC, BuenrostroJJ, RodríguezR, TeixeiraJA, et al. . Typical Mexican agroindustrial residues as supports for solid-state fermentation. Am J Agricultural Biol Sci, 2014, 9: 289-93
CrossRef Google scholar
[27.]
Kanwal Malik S, Mukhtar H, Farooqi AA, And I-U-H. Optimization of process parameters for the biosynthesis of cellulases by Trichoderma Viride. Pak J Bot. 2010;42:4243–51.
[28.]
Macarron R. Purificación y caracterización de endoglucanasa III de Trichoderma reesei QM9414. 1992.
[29.]
LowryOH, RosebroughNJ, FarrAL, RandallRJ. Protein measurement with the Folin phenol reagent. J Biol Chem, 1951, 193: 265-75
CrossRef Google scholar
[30.]
Suesca Adriana. Producción De Enzimas celulolíticas a partir de cultivos de Trichoderma sp. con biomasa lignocelulósica. Universidad Nacional de Colombia; 2012.
[31.]
Velkovska Svetlana, MartenMR, OllisDF. Kinetic model for batch cellulase production by Trichoderma reesei RUT C30. J Biotechnol, 1997, 54: 83-94
CrossRef Google scholar
[32.]
BoondaengA, KeabpimaiJ, TrakunjaeC, VaithanomsatP, SricholaP, NiyomvongN. Cellulase production under solid-state fermentation by aspergillus sp. IN5: parameter optimization and application. Heliyon, 2024
CrossRef Google scholar
[33.]
SunH, GeX, HaoZ, PengM. Cellulase production by Trichoderma sp. on apple pomace under solid state fermentation. Afr J Biotechnol, 2010, 9: 163-6
[34.]
Zhai R, Hu J, Saddler JN. What are the Major Components in Steam Pretreated Lignocellulosic Biomass that inhibit the efficacy of Cellulase Enzyme Mixtures? 2016. https://doi.org/10.1021/acssuschemeng.6b00481
[35.]
Frisvad JC. Taxonomy, chemodiversity and chemoconsistency of aspergillus, penicillium and talaromyces species. Front Microbiol. 2014;5. https://doi.org/10.3389/fmicb.2014.00773.
[36.]
Ghosh S, Godoy L, Yongabi Anchang K, Achilonu CC, Gryzenhout M. Fungal cellulases: Current Research and Future challenges. In: Ahmed M, Abdel-Azeem AN, Yadav N, Minaxi Y Sharma, editors. Industrially important Fungi for Sustainable Development. Springer Nature; 2021.
[37.]
HansenGH, LübeckM, FrisvadJC, LübeckPS, AndersenB. Production of cellulolytic enzymes from ascomycetes: comparison of solid state and submerged fermentation. Process Biochem, 2015, 50: 1327-41
CrossRef Google scholar
[38.]
SutaoneyP, ChoudharyR, GuptaAK. Bioprospecting cellulolytic fungi associated with textile waste and invitro optimization of cellulase production by aspergillus flavus NFCCI-4154. Rasayan J Chem, 2020, 13: 64-84
CrossRef Google scholar
[39.]
Vázquez-MontoyaEL, Castro-OchoaLD, Maldonado-MendozaIE, Luna-SuárezS, Castro-MartínezC. Moringa straw as cellulase production inducer and cellulolytic fungi source. Rev Argent Microbiol, 2020, 52: 4-12
CrossRef Google scholar
[40.]
Castro-OchoaLD, Hernández-LeyvaSR, Medina-GodoyS, Gómez-RodríguezJ, Aguilar-UscangaMG, Castro-MartínezC. Integration of agricultural residues as biomass source to saccharification bioprocess and for the production of cellulases from filamentous fungi. 3 Biotech, 2023, 13: 43
CrossRef Google scholar
[41.]
SousaD, SalgadoJM, Cambra-LópezM, DiasACP, BeloI. Degradation of lignocellulosic matrix of oilseed cakes by solid-state fermentation: fungi screening for enzymes production and antioxidants release. J Sci Food Agric, 2022, 102: 1550-60
CrossRef Google scholar
[42.]
Paredes MedinaD, Álvarez NúñezM, OrdoñesMS. Obtención De Enzimas Celulasas Por Fermentación Sólida De Hongos para ser Utilizadas en El. Revista Tecnológica ESPOL-RTE, 2010, 23: 81-8
[43.]
LeiteP, SousaD, FernandesH, FerreiraM, Rita CostaA, FilipeD, et al. . Recent advances in production of lignocellulolytic enzymes by solid-state fermentation of agro-industrial wastes. Green Sustainable Chem, 2021
CrossRef Google scholar
[44.]
Šelo G, Planinić M, Tišma M, Tomas S, Koceva Komlenić D, Bucić-Kojić A. A comprehensive review on valorization of agro-food industrial residues by solid-state fermentation. Foods. 2021;10. https://doi.org/10.3390/foods10050927.
[45.]
MendesCADC, FerreiraNMS, FurtadoCRG, De SousaAMF. Isolation and characterization of nanocrystalline cellulose from corn husk. Mater Lett, 2015, 148: 26-9
CrossRef Google scholar
[46.]
SekiY, SelliF, ErdoğanÜH, AtagürM, Seydibeyoğlu. A review on alternative raw materials for sustainable production: novel plant fibers. Cellulose, 2022, 29: 4877-918
CrossRef Google scholar
[47.]
LiangH, ShiboY, DongC, LincaiP, YuxinL, QingqingG, et al. . Hemicellulose transportation from different tissues of corn stalk to alkaline hydrogen peroxide solution. Cellulose, 2020, 27: 4255-69
CrossRef Google scholar
[48.]
SadhPK, DuhanS, DuhanJS. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess, 2018, 5: 1
CrossRef Google scholar
[49.]
Vandenberghe LPS, Pandey · Ashok, Carvalho JC, Luiz ·, Letti AJ, Woiciechowski AL et al. Solid-state fermentation technology and innovation for the production of agricultural and animal feed bioproducts 2021;1:142–65. https://doi.org/10.1007/s43393-020-00015-7
[50.]
Marzo C, Belén Díaz A, Caro I, Blandino A. Conversion of exhausted Sugar Beet Pulp into Fermentable sugars from a Biorefinery Approach. Foods. 2020;9(10). https://doi.org/10.3390/foods9101351.
[51.]
Do-MyoungK, EunJC, JiWK, Yong-WoogL, Hwa-JeeC. Production of cellulases by Penicillium sp. in a solid-state fermentation of oil palm empty fruit bunch. Afr J Biotechnol, 2014, 13: 145-55
CrossRef Google scholar
[52.]
Grzyb A, Wolna-Maruwka A, Niewiadomska A. The significance of microbial transformation of nitrogen compounds in the light of integrated crop management. Agronomy. 2021;11. https://doi.org/10.3390/agronomy11071415.
[53.]
SurbhiS, VermaR, DeepakR, JainH, YadavK. A review: food, chemical composition and utilization of carrot (Daucus carota L.) pomace. Article Int J Chem Sci, 2018, 6: 2921-6
[54.]
Hamoudi-BelarbiL, HamoudiS, BelkacemiK, NouriL, BendifallahL, KhodjaM. Bioremediation of polluted soil sites with crude oil hydrocarbons using carrot peel waste. Environ - MDPI, 2018, 5: 1-12
CrossRef Google scholar
[55.]
Paz-ArteagaSL, Ascacio-ValdésJA, AguilarCN, Cadena-ChamorroE, Serna-CockL, Aguilar-GonzálezMA, et al. . Bioprocessing of pineapple waste for sustainable production of bioactive compounds using solid-state fermentation. Innovative Food Sci Emerg Technol, 2023, 85: 103313
CrossRef Google scholar
[56.]
Zeng R, Yin X-Y, Ruan T, Hu Q, Hou Y-L, Zuo Z-Y, et al. A Novel Cellulase produced by a newly isolated Trichoderma virens. Bioengineering. 2016;3. https://doi.org/10.3390/bioengineering3020013.
[57.]
Larios-CruzR, Buenrostro-FigueroaJ, Prado-BarragánA, Rodríguez-JassoRM, Rodríguez-HerreraR, MontañezJC, et al. . Valorization of Grapefruit By-Products as solid support for solid-state fermentation to produce antioxidant bioactive extracts. Waste Biomass Valorization, 2019, 10: 763-9
CrossRef Google scholar
[58.]
Buenrostro-FigueroaJ, Ascacio-ValdésA, SepúlvedaL, De La CruzR, Prado-BarragánA, Aguilar-GonzálezMA, et al. . Potential use of different agroindustrial by-products as supports for fungal ellagitannase production under solid-state fermentation. Food Bioprod Process, 2014, 92: 376-82
CrossRef Google scholar
[59.]
YazidNA, BarrenaR, KomilisD, SánchezA. Solid-state fermentation as a novel paradigm for organic waste valorization: a review. Sustainability, 2017, 9: 1-28
CrossRef Google scholar
[60.]
HobuschM, KırtelO, MeramoS, SukumaraS, Hededam WelnerD. A life cycle assessment of early-stage enzyme manufacturing simulations from sustainable feedstocks. Bioresour Technol, 2024, 400: 130653
CrossRef Google scholar
[61.]
SinghB, JanaAK. Agri-residues and agro-industrial waste substrates bioconversion by fungal cultures to biocatalyst lipase for green chemistry: a review. J Environ Manage, 2023, 348: 119219
CrossRef Google scholar
[62.]
RitikaPS, PrakashA, VundavilliPR, KhadangaKC, KuilaA, et al. . Concomitant inhibitor-tolerant cellulase and xylanase production towards sustainable bioethanol production by Zasmidiumcellare CBS 146.36. Fuel, 2024, 375: 132593
CrossRef Google scholar
[63.]
ChakrabortyS, GuptaR, JainKK, KuhadRC. Cost-effective production of cellulose hydrolysing enzymes from Trichoderma sp. RCK65 under SSF and its evaluation in saccharification of cellulosic substrates. Bioprocess Biosyst Eng, 2016, 39: 1659-70
CrossRef Google scholar
[64.]
WangH, QiX, GaoS, ZhangY, AnY. Biochemical characterization of an engineered bifunctional xylanase/ feruloyl esterase and its synergistic effects with cellulase on lignocellulose hydrolysis. Bioresour Technol, 2022, 355: 127244
CrossRef Google scholar
[65.]
Yuan Y, Jiang B, Chen H, Wu W, Wu S, Jin Y, et al. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. Biotechnol Biofuels. 2021;14. https://doi.org/10.1186/s13068-021-02054-1.
[66.]
TejirianA, XuF. Inhibition of enzymatic cellulolysis by phenolic compounds. Enzyme Microb Technol, 2011, 48: 239-47
CrossRef Google scholar
[67.]
DongR, LiuS, XieJ, ChenY, ZhengY, ZhangX, et al. . The recovery, catabolism and potential bioactivity of polyphenols from carrot subjected to in vitro simulated digestion and colonic fermentation. Food Res Int, 2021, 143: 110263
CrossRef Google scholar
[68.]
Sanjay SS, Shukla AK. Mechanism of antioxidant activity. Potential therapeutic applications of Nano-antioxidants. Springer Nature; 2021. pp. 1–112. https://doi.org/10.1007/978-981-16-1143-8.
[69.]
CasalinoE, CalzarettiG, SblanoC, LandriscinaC. Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium. Toxicology, 2002, 179: 37-50
CrossRef Google scholar
[70.]
KovacsI, HolzmeisterC, WirtzM, GeerlofA, FröhlichT, RömlingG, et al. . ROS-Mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of anti-oxidative mechanisms. Front Plant Sci, 2016
CrossRef Google scholar
[71.]
Carranco Jáuregui ME. Calvo Carrillo Ma De La C, Pérez-Gil Romo F. Carotenoides Y Su función Antioxidante: Revisión. Arch Latinoam Nutr. 2011;61(3):233.
[72.]
Shree Nagraj G, Jaiswal S, Harper N, Jaiswal AK. Carrot. In: Jaiswal AK, editor. Nutritional composition and antioxidant properties of fruits and vegetables. Academic; 2020. pp. 323–37. https://doi.org/10.1016/B978-0-12-812780-3.00020-9.

23

Accesses

1

Citations

Detail

Sections
Recommended

/