1. | Stoklosa RJ, García-Negrón V, Latona RJ, Toht M. Limiting acetoin generation during 2,3-butanediol fermentation with Paenibacillus polymyxa using lignocellulosic hydrolysates. Bioresour Technol, 2024, 393: 130053, |
2. | Zhang Y, Yu J, Wu Y, Li M, Zhao Y, Zhu H, et al.. Efficient production of chemicals from microorganism by metabolic engineering and synthetic biology. Chin J Chem Eng, 2021, 30: 14-28, |
3. | Sathesh-Prabu C, Lee SK. Engineering the lva operon and optimization of culture conditions for enhanced production of 4-hydroxyvalerate from levulinic acid in Pseudomonas putida KT2440. J Agric Food Chem, 2019, 67: 2540-2546, |
4. | Cho JS, Kim GB, Eun H, Moon CW, Lee SY. Designing microbial cell factories for the production of chemicals. JACS Au, 2022, 2: 1781-1799, pmcid: 9400054 |
5. | Gorenflo V, Schmack G, Vogel R, Steinbüchel A. Development of a process for the biotechnological large-scale production of 4-hydroxyvalerate-containing polyesters and characterization of their physical and mechanical properties. Biomacromol, 2001, 2: 45-57, |
6. | Yu J. Cheng HN, Gross RA. Biosynthesis of polyhydroxyalkanoates from 4-ketovaleric acid in bacterial cells. Green polymer chemistry: biocatalysis and biomaterials, 2010 Washington American Chemical Society 161-173, |
7. | Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA. Integrated catalytic conversion of gamma-valerolactone to liquid alkenes for transportation fuels. Science, 2010, 327: 1110-1114, |
8. | Martin CH, Prather KLJ. High-titer production of monomeric hydroxyvalerates from levulinic acid in Pseudomonas putida. J Biotechnol, 2009, 139: 61-67, |
9. | Yeon YJ, Park HY, Yoo YJ. Enzymatic reduction of levulinic acid by engineering the substrate specificity of 3-hydroxybutyrate dehydrogenase. Bioresour Technol, 2013, 134: 377-380, |
10. | Moon M, Yeon YJ, Park HJ, Park J, Park GW, Kim GH, et al.. Chemoenzymatic valorization of agricultural wastes into 4-hydroxyvaleric acid via levulinic acid. Bioresour Technol, 2021, 337: 125479, |
11. | Kim D, Sathesh-Prabu C, JooYeon Y, Lee SK. High-level production of 4-hydroxyvalerate from levulinic acid via whole-cell biotransformation decoupled from cell metabolism. J Agric Food Chem, 2019, 67: 10678-10684, |
12. | Werpy T, Petersen G. . Top value added chemicals from biomass: volume I—results of screening for potential candidates from sugars and synthesis gas. (No. DOE/GO-102004-1992), 2004 Golden National Renewable Energy Lab (NREL) |
13. | Rand JM, Pisithkul T, Clark RL, Thiede JM, Mehrer CR, Agnew DE, et al.. A metabolic pathway for catabolizing levulinic acid in bacteria. Nat Microbiol, 2017, 2: 1624-1634, pmcid: 5705400 |
14. | Sathesh-Prabu C, Tiwari R, Lee SK. Substrate-inducible and antibiotic-free high-level 4-hydroxyvaleric acid production in engineered Escherichia coli. Front Bioeng Biotechnol, 2022, 10: 960907, pmcid: 9398171 |
15. | Mutalik VK, Guimaraes JC, Cambray G, Lam C, Christoffersen MJ, Mai Q-A, et al.. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods, 2013, 10: 354-360, |
16. | Seo SW, Yang J, Min BE, Jang S, Lim JH, Lim HG, et al.. Synthetic biology: tools to design microbes for the production of chemicals and fuels. Biotechnol Adv, 2013, 31: 811-817, |
17. | Seo SW, Yang J-S, Kim I, Yang J, Min BE, Kim S, et al.. Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab Eng, 2013, 15: 67-74, |
18. | Zhou L, Zuo Z-R, Chen X-Z, Niu D-D, Tian K-M, Prior BA, et al.. Evaluation of genetic manipulation strategies on d-lactate production by Escherichia coli. Curr Microbiol, 2011, 62: 981-989, |
19. | Sathesh-Prabu C, Tiwari R, Kim D, Lee SK. Inducible and tunable gene expression systems for Pseudomonas putida KT2440. Sci Rep, 2021, 11: 18079, pmcid: 8433446 |
20. | Chen F, Cocaign-Bousquet M, Girbal L, Nouaille S. 5′UTR sequences influence protein levels in Escherichia coli by regulating translation initiation and mRNA stability. Front Microbiol, 2022, 13: 1088941, pmcid: 9810816 |
21. | Dvir S, Velten L, Sharon E, Zeevi D, Carey LB, Weinberger A, et al.. Deciphering the rules by which 5′-UTR sequences affect protein expression in yeast. Proc Natl Acad Sci USA, 2013, 110: E2792-E2801, pmcid: 3725075 |
22. | Komarova AV, Tchufistova LS, Dreyfus M, Boni IV. AU-rich sequences within 5′ untranslated leaders enhance translation and stabilize mRNA in Escherichia coli. J Bacteriol, 2005, 187: 1344-1349, pmcid: 545611 |
23. | Habe H, Sato Y, Kirimura K. Microbial and enzymatic conversion of levulinic acid, an alternative building block to fermentable sugars from cellulosic biomass. Appl Microbiol Biotechnol, 2020, 104: 7767-7775, |
24. | Bozell J, Moens L, Elliott D, Wang Y, Neuenscwander G, Fitzpatrick S, et al.. Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycl, 2000, 28: 227-239, |
25. | Rackemann DW, Doherty WOS. The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod Biorefin, 2011, 5: 198-214, |
26. | Cha D, Ha HS, Lee SK. Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid. Bioresour Technol, 2020, 309: 123332, |
27. | Hayes GC, Becer CR. Levulinic acid: a sustainable platform chemical for novel polymer architectures. Polym Chem, 2020, 11: 4068-4077, |
28. | Pileidis FD, Titirici M-M. Levulinic acid biorefineries: new challenges for efficient utilization of biomass. Chemsuschem, 2016, 9: 562-582, |
29. | Mital S, Christie G, Dikicioglu D. Recombinant expression of insoluble enzymes in Escherichia coli: a systematic review of experimental design and its manufacturing implications. Microb Cell Factories, 2021, 20: 1-20, |
30. | Xu P, Gu Q, Wang W, Wong L, Bower AGW, Collins CH, et al.. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun, 2013, 4: 1409, |
31. | Mohedano MT, Konzock O, Chen Y. Strategies to increase tolerance and robustness of industrial microorganisms. Synth Syst Biotechnol, 2022, 7: 533-540, |
32. | Konzock O, Zaghen S, Norbeck J. Tolerance of Yarrowia lipolytica to inhibitors commonly found in lignocellulosic hydrolysates. BMC Microbiol, 2021, 21: 1-10, |
33. | Park C, Raines RT. Quantitative analysis of the effect of salt concentration on enzymatic catalysis. J Am Chem Soc, 2001, 123: 11472-11479, |
34. | Weimberg R. Effect of sodium chloride on the activity of a soluble malate dehydrogenase from pea seeds. J Biol Chem, 1967, 242: 3000-3006, |