1. | Hegar B, Wibowo Y, Basrowi RW, Ranuh RG, Sudarmo SM, Munasir Z, Atthiyah AF, Widodo AD, Supriatmo, Kadim M, et al.. The role of Two Human Milk Oligosaccharides, 2′-Fucosyllactose and Lacto-N-Neotetraose, in Infant Nutrition. Pediatr Gastroenterol Hepatol Nutr, 2019, 22: 330-40, pmcid: 6629589 |
2. | Chen X. Human milk oligosaccharides (HMOS): structure, function, and enzyme-catalyzed synthesis. Adv Carbohydr Chem Biochem, 2015, 72: 113-90, pmcid: 9235823 |
3. | Deng J, Lv X, Li J, Du G, Chen J, Liu L. Recent advances and challenges in microbial production of human milk oligosaccharides. Syst Microbiol Biomanuf, 2020, 1: 1-14, |
4. | Zhang P, Zhu YY, Li ZY, Zhang WL, Mu WM. Recent advances on Lacto-N-neotetraose, a commercially added human milk oligosaccharide in Infant Formula. J Agric Food Chem, 2022, 70: 4534-47, |
5. | Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch-Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, et al.. Safety of the extension of use of 2’-fucosyllactose (2’-FL) and lacto-neotetraose (LNnT) as novel foods in food supplements for infants pursuant to regulation (EU) 2015/2283. Efsa J, 2022, 20(5): e07257, pmcid: 9066521 |
6. | Zhu YY, Luo GC, Wan L, Meng JW, Lee SY, Mu WM. Physiological effects, biosynthesis, and derivatization of key human milk tetrasaccharides, lacto-N-tetraose, and lacto-N-neotetraose. Crit Rev Biotechnol, 2022, 42: 578-96, |
7. | Li WS, Wang JX, Lin YY, Li YX, Ren FZ, Guo HY. How far is it from infant formula to human milk? A look at the human milk oligosaccharides. Trends Food Sci Technol, 2021, 118: 374-87, |
8. | Tonon KM, Salga?o MK, Mesa V, Mosquera EMB, Tomé TM, Freitas PV, Alencar NMM, Sartoratto A, Lazarini T, Sivieri K. Infant formula with 2’-FL?+?LNnT positively modulates the infant gut microbiome: an in vitro study using human intestinal microbial ecosystem model. Int Dairy J, 2023, 139: 105558, |
9. | Nuzhat S, Hasan SMT, Palit P, Islam MR, Mahfuz M, Islam MM, Alam MA, Flannery RL, Kyle DJ, Sarker SA, Ahmed T. Effects of probiotic and synbiotic supplementation on ponderal and linear growth in severely malnourished young infants in a randomized clinical trial. Sci Rep, 2023, 13(1): 1845, pmcid: 9890433 |
10. | IdanpaanHeikkila I, Simon PM, Zopf D, Vullo T, Cahill P, Sokol K, Tuomanen E. Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. J Infect Dis, 1997, 176: 704-12, |
11. | Cheng YJ, Yeung CY. Recent advance in infant nutrition: human milk oligosaccharides. Pediatr Neonatol, 2021, 62: 347-53, |
12. | Palsson OS, Peery A, Seitzberg D, Amundsen ID, McConnell B, Simrén M. Human milk oligosaccharides support normal bowel function and improve symptoms of irritable bowel syndrome: a Multicenter, open-label trial. Clin Transl Gastroenterol, 2020, 11(12): e00276, pmcid: 7721220 |
13. | Faijes M, Castejón-Vilatersana M, Val-Cid C, Planas A. Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnol Adv, 2019, 37: 667-97, |
14. | Zheng J, Xu H, Fang JQ, Zhang X. Enzymatic and chemoenzymatic synthesis of human milk oligosaccharides and derivatives. Carbohydr Polym, 2022, 291: 119564, |
15. | Murata T, Inukai T, Suzuki M, Yamagishi M, Usui T. Facile enzymatic conversion of lactose into lacto-tetraose and lacto-neotetraose. Glycoconj J, 1999, 16(3): 189-95, |
16. | Bandara MD, Stine KJ, Demchenko AV. The chemical synthesis of human milk oligosaccharides: Lacto-N-neotetraose (Galβ1 →4GlcNAcβ1 →3Galβ1 →4Glc). Carbohydr Res, 2019, 483: 107743, pmcid: 6717531 |
17. | Yan FY, Wakarchuk WW, Gilbert M, Richards JC, Whitfield DM. Polymer-supported and chemoenzymatic synthesis of the pentasaccharide: a methodological comparison. Carbohydr Res, 2000, 328: 3-16, |
18. | Aly MRE, Ibrahim ESI, El Ashry ESH, Schmidt RR. Synthesis of lacto-neotetraose and lacto-tetraose using the dimethylmaleoyl group as amino protective grou. Carbohydr Res, 1999, 316: 121-32, |
19. | Meng JW, Zhu YY, Wang H, Cao HZ, Mu WM. Biosynthesis of human milk oligosaccharides: enzyme Cascade and Metabolic Engineering Approaches. J Agric Food Chem, 2023, 71(5): 2234-43, |
20. | Priem B, Gilbert M, Wakarchuk WW, Heyraud A, Samain E. A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria. Glycobiology, 2002, 12: 235-40, |
21. | Dong XM, Li N, Liu ZM, Lv XQ, Shen Y, Li JH, Du GC, Wang M, Liu L. CRISPRi-Guided multiplexed fine-tuning of metabolic flux for enhanced lacto-neotetraose production in Bacillus subtilis. J Agric Food Chem, 2020, 68: 2477-84, |
22. | Dong XM, Li N, Liu ZM, Lv XQ, Li JH, Du GC, Wang M, Liu L. Modular pathway engineering of key precursor supply pathways for lacto-neotetraose production in Bacillus subtilis. Biotechnol Biofuels, 2019, 12: 212, pmcid: 6732834 |
23. | Luo GC, Zhu YY, Meng JW, Wan L, Zhang WL, Mu WM. A novel β-1,4-Galactosyltransferase from Histophilus somni enables efficient biosynthesis of Lacto-N-neotetraose via both enzymatic and cell factory approaches. J Agric Food Chem, 2021, 69: 5683-90, |
24. | Zhu YY, Luo GC, Li ZY, Zhang P, Zhang WL, Mu WM. Efficient biosynthesis of lacto-N-neotetraose by a novel fl-1,4-galactosyltransferase from Aggregatibacter actinomycetemcomitans NUM4039. Enzyme Microb Technol, 2022, 153: 109912, |
25. | Liao YX, Wu JY, Li ZK, Wang J, Yuan LX, Lao CW, Chen XS, Yao JM. Metabolic Engineering of Escherichia coli for High-Level production of Lacto-neotetraose and lacto-tetraose. J Agric Food Chem, 2023, 71: 11555-66, |
26. | Zhang MW, Zhang K, Liu TL, Wang LY, Wu MP, Gao SQ, Cai BH, Zhang FS, Su LQ, Wu J. High-level production of Lacto-neotetraose in Escherichia coli by Stepwise optimization of the Biosynthetic Pathway. J Agric Food Chem, 2023, 71: 16212-20, |
27. | Zhang W, Liu Z, Gong M, Li N, Lv X, Dong X, Liu Y, Li J, Du G, Liu L. Metabolic engineering of Escherichia coli for the production of Lacto-N-neotetraose (LNnT). Syst Microbiol Biomanuf, 2021, 1: 291-301, |
28. | Zhu XW, Wu YK, Lv XQ, Liu YF, Du GC, Li JH, Liu L. Combining CRISPR-Cpf1 and recombineering facilitates fast and efficient genome editing in Escherichia coli. ACS Synth Biol, 2022, 11(5): 1897-907, |
29. | Zhu YY, Wan L, Meng JW, Luo GC, Chen G, Wu H, Zhang WL, Mu WM. Metabolic Engineering of Escherichia coli for Lacto-N-triose II production with high Productivity. J Agric Food Chem, 2021, 69: 3702-11, |
30. | Zhang P, Zhu YY, Li ZY, Zhang WL, Guang CE, Mu WM. Designing a highly efficient Biosynthetic Route for Lacto-N-Neotetraose production in Escherichia coli. J Agric Food Chem, 2022, 70: 9961-8, |
31. | Han L, Wu Y, Xu Y, Zhang C, Liu Y, Li J, Du G, Lv X, Liu L. Engineered Saccharomyces cerevisiae for de novo δ-tocotrienol biosynthesis. Syst Microbiol Biomanuf. 2023:1–15. |
32. | Zhu Y, Wu Y, Yu W, Zhang Q, Liu Y, Li J, Du G, Lv X, Liu L. Engineering Bacillus subtilis for efficient production of 3′-sialyllactose. Syst Microbiol Biomanuf. 2023:1–13. |
33. | Chen X, Zaro JL, Shen W-C. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev, 2013, 65(10): 1357-69, |
34. | G?rke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol, 2008, 6(8): 613-24, |
35. | Jarmander J, Hallstr?m BM, Larsson G. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli. Biotechnol Bioeng, 2014, 111(6): 1108-15, |
36. | Nakashima N, Tamura T. A new carbon catabolite repression mutation of Escherichia coli, mlc?, and its use for producing isobutanol. J Biosci Bioeng, 2012, 114(1): 38-44, |
37. | Sun J. Rapid strain evaluation using dynamic DO-stat fed-batch fermentation under scale-down conditions. Methods Mol Biol, 2012, 834: 233-44, |
38. | Cheng L-K, et al.. Effect of feeding strategy on l-tryptophan production by recombinant Escherichia coli. Ann Microbiol, 2012, 62(4): 1625-34, |