1. | Villacreces S, Blanco CA, Caballero I. Developments and characteristics of craft beer production processes. Food Bioscience, 2022, 45: 101495, |
2. | Liu L, Yang H, Coldea TE, Zhao H. Improving the emulsifying capacity of brewers’ spent grain arabinoxylan by carboxymethylation. Int J Biol Macromol, 2024, 258: 128967, |
3. | Huang Zuxin, Huang Zhen, Xue Liang, Chen Zongfeng. Optimization of Fermentation Processing about a light-type Monascus Rice Wine. J Fujian Normal Univ (Nat Sci Edit), 2009, 25(5): 90-4 |
4. | Lerro M, Marotta G, Nazzaro C. Measuring consumers’ preferences for craft beer attributes through best-worst scaling. Agricultural Food Econ, 2020, 8(1): 1, |
5. | Dysvik A, La Rosa SL, Liland KH, Myhrer KS, Ostlie HM, De Rouck G, Rukke EO, Westereng B, Wicklund T. Co-fermentation Involving Saccharomyces cerevisiae and Lactobacillus species tolerant to Brewing-related stress factors for controlled and Rapid Production of Sour Beer. Front Microbiol, 2020, 11: 279, pmcid: 7048013 |
6. | Wu C, Wang C, Guo J, Jike X, Yang H, Xu H, Lei H. Plant-derived antioxidant dipeptides provide lager yeast with osmotic stress tolerance for very high gravity fermentation. Food Microbiol, 2024, 117: 104396, |
7. | Cao Y, Lu J, Cai G. Quality improvement of soybean meal by yeast fermentation based on the degradation of anti-nutritional factors and accumulation of beneficial metabolites. J Sci Food Agric, 2023, |
8. | Cao Y, Xu M, Lu J, Cai G. Simultaneous Microbial Fermentation and Enzymolysis: a Biotechnology Strategy to improve the nutritional and functional quality of soybean meal. Food Reviews Int, 2023, |
9. | Yuan L, Zhao H, Liu L, Peng S, Li H, Wang H. Heterologous expression of the puuE from Oenococcus oeni SD-2a in Lactobacillus plantarum WCFS1 improves ethanol tolerance. J Basic Microbiol, 2019, |
10. | Yang X, Teng K, Li L, Su R, Zhang J, Ai G, Zhong J. Transcriptional Regulator AcrR increases ethanol tolerance through regulation of fatty acid synthesis in Lactobacillus plantarum. Appl Environ Microbiol. 2019;85(22). https://doi.org/10.1128/AEM.01690-19. |
11. | Zhao H, Yuan L, Hu K, Liu L, Peng S, Li H, Wang H. Heterologous expression of ctsR from Oenococcus oeni enhances the acid-ethanol resistance of Lactobacillus plantarum. FEMS Microbiol Lett. 2019;366(15). https://doi.org/10.1093/femsle/fnz192. |
12. | Da Silveira MG, Golovina EA, Hoekstra FA, Rombouts FM, Abee T. Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells. Appl Environ Microbiol, 2003, 69(10): 5826-32, pmcid: 201238 |
13. | Olguin N, Champomier-Verges M, Anglade P, Baraige F, Cordero-Otero R, Bordons A, Zagorec M, Reguant C. Transcriptomic and proteomic analysis of Oenococcus oeni PSU-1 response to ethanol shock. Food Microbiol, 2015, 51: 87-95, |
14. | Haakensen MC, Butt L, Chaban B, Deneer H, Ziola B, Dowgiert T. horA-speciric real-time PCR for detection of beer-spoilage lactic acid bacteria. J Am Soc Brew Chem, 2007, 65(3): 157-65, |
15. | Bergsveinson J, Pittet V, Ziola B. RT-qPCR analysis of putative beer-spoilage gene expression during growth of Lactobacillus brevis BSO 464 and Pediococcus claussenii ATCC BAA-344(T) in beer. Appl Microbiol Biotechnol, 2012, 96(2): 461-70, |
16. | Tian TT, Wu DH, Ng CT, Yang H, Sun JY, Liu JM, Lu J. A multiple-step strategy for screening Saccharomyces cerevisiae strains with improved acid tolerance and aroma profiles. Appl Microbiol Biotechnol, 2020, 104(7): 3097-107, |
17. | Behr J, Israel L, Gaenzle MG, Vogel RF. Proteomic approach for characterization of hop-inducible proteins in Lactobacillus brevis. Appl Environ Microbiol, 2007, 73(10): 3300-6, pmcid: 1907096 |
18. | Ma EJJ, Chen LL, Ma ZC, Zhang RZ, Sun QL, He RY, Wang ZB. Effects of buffer salts on the freeze-drying survival rate of Lactobacillus plantarum LIP-1 based on transcriptome and proteome analyses. Food Chem, 2020, 326: 9, |
19. | Tenea GN, Pozo TD. Antimicrobial peptides from Lactobacillus plantarum UTNGt2 prevent harmful Bacteria growth on Fresh Tomatoes. J Microbiol Biotechnol, 2019, 29(10): 1553-60, |
20. | Bellut K, Michel M, Hutzler M, Zarnkow M, Jacob F, De Schutter DP, Daenen L, Lynch KM, Zannini E, Arendt EK. Investigation into the potential of Lachancea fermentati strain KBI 12.1 for low Alcohol Beer Brewing. J Am Soc Brew Chem, 2019, 77(3): 157-69, |
21. | Yang HR, Zong XY, Cu C, Mu LX, Zhao HF. Peptide (Lys-Leu) and amino acids (lys and Leu) supplementations improve physiological activity and fermentation performance of brewer’s yeast during very high-gravity (VHG) wort fermentation. Biotechnol Appl Chem, 2018, 65(4): 630-8, |
22. | Gurdo N, Poisson GFN, Juarez AB, de Molina MCR, Galvagno MA. Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability. J Appl Microbiol, 2018, 125(3): 766-76, |
23. | Xu Z, Luo Y, Mao Y, Peng R, Chen J, Soteyome T, Bai C, Chen L, Liang Y, Su J, Wang K, Liu J, Kjellerup BV. Spoilage lactic acid Bacteria in the Brewing Industry. J Microbiol Biotechnol, 2020, 30(7): 955-61, pmcid: 9728350 |
24. | Garcia-Garcia JH, Damas-Buenrostro LC, Cabada-Amaya JC, Elias-Santos M, Pereyra-Alferez B. Pediococcus damnosus strains isolated from a brewery environment carry the horA gene. J Inst Brew, 2017, 123(1): 77-80, |
25. | Sun Z, Xu JX, Ren WJ, Tang WZ, Yu ZM, Li XZ. Hop bitter acids inhibit carbohydrate metabolism, enhance biogenic amine metabolism and alter L-malic acid, glutamic acid and arginine metabolism of Lactobacillus brevis 49. Int J Food Sci Technol, 2019, 54(2): 361-7, |
26. | Bokulich NA, Bamforth CW. The Microbiology of Malting and Brewing. Microbiol Mol Biol Rev, 2013, 77(2): 157-72, pmcid: 3668669 |
27. | Wang G, Zhai Z, Ren F, Li Z, Zhang B, Hao Y. Combined transcriptomic and proteomic analysis of the response to bile stress in a centenarian-originated probiotic Lactobacillus salivarius Ren. Food Res Int. 2020;137. https://doi.org/10.1016/j.foodres.2020.109331. |
28. | Liu S, Skory C, Qureshi N. Ethanol tolerance assessment in recombinant E. Coli of ethanol responsive genes from Lactobacillus buchneri NRRL B-30929. World J Microbiol Biotechnol. 2020;36(12). https://doi.org/10.1007/s11274-020-02953-9. |
29. | Chastanet A, Prudhomme M, Claverys JP, Msadek T. Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival. J Bacteriol, 2001, 183(24): 7295-307, pmcid: 95579 |
30. | Kim WS, Perl L, Park JH, Tandianus JE, Dunn NW. Assessment of stress response of the probiotic Lactobacillus acidophilus. Curr Microbiol, 2001, 43(5): 346-50, |
31. | Min H, Tao H, Zhen P, Xueting Z, Tao X. (2019) Influences of bile salts on stress genes and key physiological indexes of Lactobacillus plantarum NCU116. Food Ferment Industries (No 9):1–8. |
32. | Miflin BJ, Habash DZ. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot, 2002, 53(370): 979-87, |
33. | Mykytczuk NCS, Trevors JT, Leduc LG, Ferroni GD. Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog Biophys Mol Biol, 2007, 95(1–3): 60-82, |
34. | Siroli L, Braschi G, Rossi S, Gottardi D, Patrignani F, Lanciotti R. Lactobacillus paracasei A13 and high-pressure homogenization stress response. Microorganisms, 2020, 8(3): 15, |
35. | Fozo EM, Kajfasz JK, Quivey RG. Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiol Lett, 2004, 238(2): 291-5, |
36. | Haddaji N, Mahdhi AK, Ben Ismaiil M, Bakhrouf A. Effect of environmental stress on cell surface and membrane fatty acids of Lactobacillus plantarum. Arch Microbiol, 2017, 199(9): 1243-50, |
37. | Machado MC, Lopez CS, Heras H, Rivas EA. Osmotic response in Lactobacillus casei ATCC 393: biochemical and biophysical characteristics of membrane. Arch Biochem Biophys, 2004, 422(1): 61-70, |
38. | Chopra L, Singh G, Jena KK, Sahoo DK. Sonorensin: a new bacteriocin with potential of an anti-biofilm agent and a food biopreservative. Sci Rep, 2015, 5: 13, |
39. | Miao JY, Zhou JL, Liu G, Chen FL, Chen YJ, Gao XY, Dixon W, Song MY, Xiao H, Cao Y. Membrane disruption and DNA binding of Staphylococcus aureus cell induced by a novel antimicrobial peptide produced by Lactobacillus paracasei subsp tolerans FX-6. Food Control, 2016, 59: 609-13, |
40. | Vivek KB, Ahmad Rather I, Rajib M, Hamad Alshammari F, Gyeong-Jun N, Yong-Ha P. Characterization and antibacterial mode of action of lactic acid bacterium Leuconostoc mesenteroides HJ69 from Kimchi. J Food Biochem, 2017, 41(1): e12290, 12211pp.]-e12290 [12211pp.] |
41. | Cai-xia L, Xue-wu G, Ling-ling L, Qu-lai T, Ya-ping W, Shuang X, Zhen-jiang L, Dong-guang X. Interactions of high ester producing Saccharomyces cerevisiae and lactic acid bacteria during co-fermentation. Mod Food Sci Technol (No. 2017;779–85. https://doi.org/10.13982/j.mfst.1673-9078.2017.7.012. |
42. | Chan MZA, Chua JY, Toh M, Liu SQ. Survival of probiotic strain Lactobacillus paracasei L26 during co-fermentation with S. Cerevisiae for the development of a novel beer beverage. Food Microbiol, 2019, 82: 541-50, |
43. | Yang HY, Sadiq FA, Liu TJ, Zhang GH, He GQ. Use of physiological and transcriptome analysis to infer the interactions between Saccharomyces cerevisiae and Lactobacillus sanfranciscensis isolated from Chinese traditional sourdoughs. LWT-Food Sci Technol, 2020, 126: 8, |
44. | Devi A, Anu-Appaiah KA. Mixed malolactic co-culture (Lactobacillus plantarum and Oenococcus oeni) with compatible Saccharomyces influences the polyphenolic, volatile and sensory profile of Shiraz wine. LWT-Food Sci Technol. 2021;135. https://doi.org/10.1016/j.lwt.2020.110246. |
45. | Pozo-Bayon MA, Alegria EG, Polo MC, Tenorio C, Martin-Alvarez PJ, De La Banda MTC, Ruiz-Larrea F, Moreno-Arribas MV. Wine volatile and amino acid composition after malolactic fermentation: Effect of Oenococcus oeni and Lactobacillus plantarum starter cultures. J Agric Food Chem, 2005, 53(22): 8729-35, |
46. | Ni K, Wang F, Zhu B, Yang J, Zhou G, Pan Y, Tao Y, Zhong J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour Technol, 2017, 238: 706-15, |
47. | Wang Y, Wu J, Lv M, Shao Z, Hungwe M, Wang J, Bai X, Xie J, Wang Y, Geng W. Metabolism characteristics of lactic acid Bacteria and the Expanding Applications in Food Industry. Front Bioeng Biotechnol. 2021;9. https://doi.org/10.3389/fbioe.2021.612285. |